Skip to main content
Log in

Structure evolution of ZrB2–SiC during the oxidation in air

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure evolution and oxidation behavior of ZrB2–SiC composites in air from room temperature to ultrahigh temperature were investigated using furnace testing, arc jet testing, and thermal gravimetric analysis (TGA). The oxide structure changed with the increasing temperature. SiC content has no apparent influence on the evolution of structure during the oxidation of ZrB2–SiC below 1600 °C. However, the evolution of structure for ZrB2–SiC above 1800 °C was significantly affected by the SiC content. The formation of the SiC depleted layer in the ZrB2–SiC system not only depends on the surrounding conditions of pressure and temperature but also on the structure distribution of the SiC in the ZrB2 matrix. The apparent recrystallization of the ZrO2 occurred above 1800 °C. The SiC content should be controlled at ∼16% in the ZrB2–SiC system for the ultrahigh-temperature application. The mechanisms of the structure evolution during oxidation in air were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18

Similar content being viewed by others

References

  1. K. Upadhya, J.M. Yang W.P. Hoffman: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 76, 51 1997

    CAS  Google Scholar 

  2. S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh J.A. Salem: Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757 2002

    Article  CAS  Google Scholar 

  3. E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort F. Guitierrez-Mora: Designing for ultra high temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx, and Hf(N). J. Mater. Sci. 39, 5939 2004

    Article  CAS  Google Scholar 

  4. D.M. Van Wie, D.G. Drewry Jr., D.E. King C.M. Hudson: The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915 2004

    Article  Google Scholar 

  5. F. Monteverde: The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros. Sci. 47, 2020 2005

    Article  CAS  Google Scholar 

  6. M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman S. Johnson: Processing, properties and arc jet oxidation of hafnium diboride/Silicon carbide ultra high temperature ceramic. J. Mater. Sci. 39, 5925 2004

    Article  CAS  Google Scholar 

  7. F. Monteverde A. Bellosi: Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications. Adv. Eng. Mater. 6, 331 2004

    Article  CAS  Google Scholar 

  8. F. Monteverde A. Bellosi: The resistance to oxidation of an HfB2–SiC composite. J. Eur. Ceram. Soc. 25, 1025 2005

    Article  CAS  Google Scholar 

  9. A.L. Chamberlain, W.G. Fahrenholtz G.E. Hilmas: Oxidation of ZrB2–SiC ceramics under atmospheric and reentry conditions. Refract. Appl. Trans. 1, 1 2005

    Google Scholar 

  10. M.M. Opeka, I.G. Talmy J.A. Zaykoski: Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 2004

    Article  CAS  Google Scholar 

  11. F. Monteverde A. Bellosi: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150, 552 2003

    Article  Google Scholar 

  12. W.G. Fahrenholtz, G.E. Hilmas, A.L. Chamberlain J.W. Zimmermann: Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 39, 5951 2004

    Article  CAS  Google Scholar 

  13. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy J.A. Zaykoski: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc 90, 1347 2007

    Article  CAS  Google Scholar 

  14. J.C. Han, P. Hu, X.H. Zhang S.H. Meng: Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C. Scr. Mater. 57, 825 2007

    Article  CAS  Google Scholar 

  15. J.C. Han, P. Hu, X.H. Zhang, S.H. Meng W.B. Han: Oxidation resistant ZrB2–SiC composites at 2200 °C. Compos. Sci. Technol. 68, 799 2008

    Article  CAS  Google Scholar 

  16. X.H. Zhang, P. Hu, J.C. Han S.H. Meng: Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 68, 1718 2008

    Article  CAS  Google Scholar 

  17. W.G. Fahrenholtz: Thermodynamic analysis of ZrB2–SiC oxidation: Formation of a SiC-depletion region. J. Am. Ceram. Soc. 90, 143 2007

    Article  CAS  Google Scholar 

  18. A. Rezaie, W.G. Fahrenholtz G.E. Hilmas: Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J. Eur. Ceram. Soc. 27, 2495 2007

    Article  CAS  Google Scholar 

  19. W.G. Fahrenholtz: The ZrB2 volatility diagram. J. Am. Ceram. Soc. 88, 3509 2005

    Article  CAS  Google Scholar 

  20. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas D.T. Ellerby: Characterization of zirconium diboride-molybdenum disilicide ceramics. Ceram. Trans. 153, 299 2004

    Google Scholar 

  21. D. Sciti, M. Brach A. Bellosi: Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J. Mater. Res. 20, 922 2005

    Article  CAS  Google Scholar 

  22. E.J. Opila, S.R. Levine J. Lorincz: Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions. J. Mater. Sci. 39, 5969 2004

    Article  CAS  Google Scholar 

  23. I.G. Talmy, J.A. Zaykoski, M.M. Opeka A.H. Smith: Properties of ceramics in the system ZrB2–Ta5Si3. J. Mater. Res. 21, 2593 2006

    Article  CAS  Google Scholar 

  24. S.R. Levine E.J. Opila: Tantalum addition to zirconium diboride for improved oxidation resistance. NASA/TM—2003-212483, 2003 1–13

    Google Scholar 

  25. V.A. Lavrenko, A.D. Panasyuk, T.G. Protsenko, V.P. Dyatel, E.S. Lugovskaya E.I. Egorova: High temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Poroshk. Metall. 6, 56 1981

    Google Scholar 

  26. I.G. Talmy, J.A. Zaykoski, M.M. Opeka S. Dallek: Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition netal borides in High Temperature Corrosion and Materials Chemistry III edited by M. McNallan and E. Opila The Electrochemical Society Pennington, NJ, 2001 144–153

    Google Scholar 

  27. T. Goto H. Homma: High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres. J. Eur. Ceram. Soc. 22, 2749 2002

    Article  CAS  Google Scholar 

  28. M.J.H. Balat: Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. J. Eur. Ceram. Soc. 16, 55 1996

    Article  CAS  Google Scholar 

  29. M.W. Chase Jr.: NIST-JANAF Thermochemical Tables 4th ed. American Institute of Physics Woodbury, NY 1998

    Google Scholar 

  30. A.H. Heuer V.L.K. Lou: Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high-temperature decomposition and oxidation. J. Am. Ceram. Soc. 73, 2786 1990

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (50602010), the Research Fund for the Doctoral Program of Higher Education (20060213031), and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Hong Zhang or Ping Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XH., Hu, P. & Han, JC. Structure evolution of ZrB2–SiC during the oxidation in air. Journal of Materials Research 23, 1961–1972 (2008). https://doi.org/10.1557/JMR.2008.0251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0251

Navigation