Skip to main content
Log in

Friction anisotropy: A unique and intrinsic property of decagonal quasicrystals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We show that friction anisotropy is an intrinsic property of the atomic structure of Al–Ni–Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science309, 1354 (2005)]. Friction anisotropy is manifested in both nanometer-size contacts obtained with sharp atomic force microscope tips and macroscopic contacts produced in pin-on-disk tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 1984

    Article  CAS  Google Scholar 

  2. S.S. Kang, J.M. Dubois J. von Stebut: Tribological properties of quasicrystalline coatings. J. Mater. Res. 8, 2471 1993

    Article  CAS  Google Scholar 

  3. J-M. Dubois: Useful Quasicrystals World Scientific NJ 2005

    Book  Google Scholar 

  4. J.M. Dubois, S.S. Kang J. Vonstebut: Quasi-crystalline low-friction coatings. J. Mater. Sci. Lett. 10, 537 1991

    Article  CAS  Google Scholar 

  5. N. Rivier: Nonstick quasi-crystalline coatings. J. Non-Cryst. Solids 153, 458 1993

    Article  Google Scholar 

  6. J.Y. Park, D.F. Ogletree, M. Salmeron, R.A. Ribeiro, P.C. Canfield, C.J. Jenks P.A. Thiel: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354 2005

    Article  CAS  Google Scholar 

  7. B.N.J. Persson, G. Carbone, V.N. Samoilov, I.M. Sivebaek, U. Tartaglino, A.I. Volokitin C. Yang: Contact mechanics, friction and adhesion with application to quasicrystals in Fundamentals of Friction and Wear edited by E. Gnecco and E. Meyer Springer Berlin, Heidelberg, Germany 2007 269–306

    Chapter  Google Scholar 

  8. P.J. Pinhero, J.W. Anderegg, D.J. Sordelet, M.F. Besser P.A. Thiel: Surface oxidation of Al–Cu–Fe alloys: A comparison of quasicrytalline and crystalline phases. Philos. Mag. B 79, 91 1999

    Article  CAS  Google Scholar 

  9. S-L. Chang, J.W. Anderegg P.A. Thiel: Surface oxidation of an Al–Pd–Mn quasicrystal, characterised by XPS. J. Non-Cryst. Solids 195, 95 1996

    Article  CAS  Google Scholar 

  10. D. Veys, P. Weisbecker, V. Fournée, B. Domenichini, S. Weber, C. Rapin J.M. Dubois: Aging of the surface of an Al–Cr–Fe approximant phase in ambient conditions: Chemical composition and physical properties in Quasicrystals 2003–Preparation, Properties, and Applications, edited by E. Belin-Ferré, M. Feuerbacher, Y. Ishii, and D.J. Sordelet (Mater. Res. Soc. Symp. Proc. 805, Warrendale, PA, 2004), LL8.8.1

  11. D. Rouxel P. Pigeat: Surface oxidation and thin film preparation of AlCuFe quasicrystals. Prog. Surf. Sci. 81, 488 2006

    Article  CAS  Google Scholar 

  12. J.Y. Park, D.F. Ogletree, M. Salmeron, R.A. Ribeiro, P.C. Canfield, C.J. Jenks P.A. Thiel: Tribological properties of quasicrystals: Effect of aperiodic versus periodic surface order. Phys. Rev. B 74, 024203 2006

    Article  Google Scholar 

  13. J.Y. Park, D.F. Ogletree, M. Salmeron, R.A. Ribeiro, P.C. Canfield, C.J. Jenks P.A. Thiel: Atomic scale coexistence of periodic and quasiperiodic order in a 2-fold Al–Ni–Co decagonal quasicrystal surface. Phys. Rev. B 72, 220201 2005

    Article  Google Scholar 

  14. I.R. Fisher, M.J. Kramer, Z. Islam, A.R. Ross, A. Kracher, T. Wiener, M.J. Sailer, A.I. Goldman P.C. Canfield: On the growth of decagonal Al–Ni–Co quasicrystals from the ternary melt. Philos. Mag. 79, 425 1999

    Article  CAS  Google Scholar 

  15. J.E. Sader, J.W.M. Chon P. Mulvaney: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967 1999

    Article  CAS  Google Scholar 

  16. J.M. Dubois, P. Brunet, W. Costin A. Merstallinger: Friction and fretting on quasicrystals under vacuum. J. Non-Cryst. Solids 334, 475 2004

    Article  Google Scholar 

  17. J.Y. Park, D.F. Ogletree, M. Salmeron, C.J. Jenks P.A. Thiel: Friction and adhesion properties of clean and oxidized Al–Ni–Co decagonal quasicrystals: A UHV atomic force microscopy / scanning tunneling microscopy study. Tribology Lett. 17, 629 2004

    Article  CAS  Google Scholar 

  18. J.S. Wu, V. Brien, P. Brunet, C. Dong J.M. Dubois: Electron microscopy study of scratch-induced surface microstructures in an Al–Cu–Fe icosahedral quasicrystal. Philos. Mag. A 80, 1645 2000

    Article  CAS  Google Scholar 

  19. R. Wittmann, K. Urban, M. Schandl E. Hornbogen: Mechanical properties of single-quasi-crystalline AlCuCoSi. J. Mater. Res. 6, 1165 1991

    Article  CAS  Google Scholar 

  20. S. Martin, A.F. Hebard, A.R. Kortan F.A. Thiel: Transport-properties of Al65Cu15Co20 and Al70Ni15Co15 decagonal quasi-crystals. Phys. Rev. Lett. 67, 719 1991

    Article  CAS  Google Scholar 

  21. D.L. Zhang, S.C. Cao, Y.P. Wang, L. Lu, X.M. Wang, X.L. Ma K.H. Kuo: Anisotropic thermal-conductivity of the 2D single quasi-crystals: Al65Ni20Co15 and Al62Si3Cu20Co15. Phys. Rev. Lett. 66, 2778 1991

    Article  CAS  Google Scholar 

  22. W. Theis, H.R. Sharma, K.J. Franke K.H. Rieder: Surface photons in quasicrystals. Prog. Surf. Sci. 75, 227 2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in the United States by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the United States Department of Energy through the Ames Laboratory, Contract No. W-405-Eng-82, and through the Lawrence Berkeley National Laboratory, Materials Sciences Division, Contract No. DE-AC02-05CH11231. We thank P.C. Canfield and his group for providing single grain samples of the quasicrystal. In Europe, support was provided by Centre National de la Recherche Scientifique (CNRS), Region Lorraine and the Commission of the European Communities (Contract No. NMP3–CT–2005 - 500145). We are also grateful to the Austrian Research Centres—Seibersdorf and to Dr. A. Merstallinger for access to the pin-on-disk facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salmeron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Ogletree, D., Salmeron, M. et al. Friction anisotropy: A unique and intrinsic property of decagonal quasicrystals. Journal of Materials Research 23, 1488–1493 (2008). https://doi.org/10.1557/JMR.2008.0187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0187

Navigation