Skip to main content
Log in

An embedded-atom method interatomic potential for Pd–H alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Palladium hydrides have important applications. However, the complex Pd–H alloy system presents a formidable challenge to developing accurate computational models. In particular, the separation of a Pd–H system to dilute (α) and concentrated (β) phases is a central phenomenon, but the capability of interatomic potentials to display this phase miscibility gap has been lacking. We have extended an existing palladium embedded-atom method potential to construct a new Pd–H embedded-atom method potential by normalizing the elemental embedding energy and electron density functions. The developed Pd–H potential reasonably well predicts the lattice constants, cohesive energies, and elastic constants for palladium, hydrogen, and PdHx phases with a variety of compositions. It ensures the correct hydrogen interstitial sites within the hydrides and predicts the phase miscibility gap. Preliminary molecular dynamics simulations using this potential show the correct phase stability, hydrogen diffusion mechanism, and mechanical response of the Pd–H system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
TABLE II.
FIG. 2
TABLE III.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. R. Lasser Tritium and Helium-3 in Metals, Vol. 9, Springer-Verlag Berlin 1989

  2. Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Vol. 2 Springer-Verlag Berlin 1978

  3. Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Vol. 2 Springer-Verlag Berlin 1978

  4. Transition Metal Hydrides, edited by E.L. Muetterties Marcel Dekker New York 1971

    Google Scholar 

  5. W.M. Mueller, J.P. Blackledge, G.G. Libowitz: Metal Hydrides Academic Press New York 1968

    Google Scholar 

  6. Y. Fukai The Metal-Hydrogen System, Vol. 21, Springer-Verlag Berlin 1993

  7. R. Povel, K. Feucht, W. Gelse, G. Withalm: Hydrogen fuel for motorcars. Interdiscip. Sci. Rev. 14(4), 365 1989

    Article  Google Scholar 

  8. M.S. Ortman, L.K. Heung, A. Nobile, R.L. Rabun: Tritium processing at the Savannah River site—Present and future. J. Vac. Sci. Technol., A 8(3), 2881 1990

    Article  CAS  Google Scholar 

  9. L.K. Heung: Heat transfer and kinetics of a metal hydride reactor. Z. Phys. Chem. Neue Folge 164, 1415 1989

    Article  Google Scholar 

  10. M.S. Ortman, T.J. Warren, D.J. Smith: Use of metal hydrides for handling tritium. Fusion Technol. 8(2), 2330 1985

    Article  CAS  Google Scholar 

  11. V.I. Anisimkin, I.M. Kotelyanskii, P. Verardi, E. Verona: Elastic properties of thin film palladium for surface-acoustic-wave (SAW) sensors. Sens. Actuators, B 23(2–3), 203 1995

    Article  CAS  Google Scholar 

  12. L.A. Nygren, R.G. Leisure: Elastic constants of α′-Phase PdHx over the temperature range 4–300 K. Phys. Rev. B 37(11), 6482 1988

    Article  CAS  Google Scholar 

  13. D.K. Hsu, R.G. Leisure: Elastic constants of palladium and β-phase palladium hydride between 4 and 300 K. Phys. Rev. B 20(4), 1339 1979

    Article  CAS  Google Scholar 

  14. A.A. Lucas: Helium in metals. Phys. B + C (Amsterdam).127(1–3), 225 1984

    CAS  Google Scholar 

  15. S. Thiebaut, B. Decamps, J.M. Penisson, B. Limacher, A.P. Guegan: TEM study of the aging of palladium-based alloys during tritium storage. J. Nucl. Mater. 277(2–3), 217 2000

    Article  CAS  Google Scholar 

  16. C. Cawthorne, E.J. Fulton: Voids in irradiated stainless steel. Nature 216(5115), 575, 1967

  17. G.C. Abell, A. Attalla: NMR studies of aging effects in palladium tritide. Fusion Technol. 14(2), 643 1988

    Article  CAS  Google Scholar 

  18. S.H. Goods, S.E. Guthrie: Mechanical properties of palladium and palladium hydride. Scripta Metall. Mater. 26, 561 1992

    Article  CAS  Google Scholar 

  19. R.T. Walters, M.W. Lee: 2 plateaus for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide. Mater. Char. 27(3), 157 1991

    Article  Google Scholar 

  20. G. Andreasen, A. Visintin, R.C. Salvarezza, W.E. Triaca, A.J. Arvia: Hydrogen induced deformation of metals followed by in situ scanning tunneling microscopy, palladium electrolytic hydrogen charging and discharging in alkaline solution. Langmuir 15(1), 1 1999

    Article  CAS  Google Scholar 

  21. M.S. Daw, M.I. Baskes: Embedded atom method—Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443 1984

    Article  CAS  Google Scholar 

  22. M.S. Daw, M.I. Baskes: Semiempirical quantum mechanical calculations of hydrogen embrittlement in metals. Phys. Rev. Lett. 50(17), 1285 1983

    Article  CAS  Google Scholar 

  23. S.M. Foiles, M.I. Baskes, M.S. Daw: Embedded atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12), 7983 1986

    Article  CAS  Google Scholar 

  24. W. Zhong, Y.S. Li, D. Tomanek: Effect of adsorbates on surface phonon modes—H on Pd(001) and Pd(110). Phys. Rev. B 44(23), 13053 1991

    Article  CAS  Google Scholar 

  25. R.J. Wolf, M.W. Lee, R.C. Davis, P.J. Fay, J.R. Ray: Pressure–composition isotherms for palladium hydride. Phys. Rev. B 48(17), 12415 1993

    Article  CAS  Google Scholar 

  26. R.J. Wolf, K.A. Mansour, M.W. Lee, J.R. Ray: Temperature dependence of elastic constants of embedded-atom models of palladium. Phys. Rev. B 46(13), 8027 1992

    Article  CAS  Google Scholar 

  27. R.J. Wolf, P.J. Fay, and J.R. Ray (Private Communication 2002

    Google Scholar 

  28. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49(19), 4005 2001

    Article  CAS  Google Scholar 

  29. W. Zou, H.N.G. Wadley, X.W. Zhou, R.A. Johnson, D. Brownell: Surfactant mediated growth of giant magnetoresistance multilayers. Phys. Rev. B 64(17), 174418 2001

    Article  Google Scholar 

  30. M. Ruda, D. Farkas, J. Abriata: Embedded atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys. Rev. B 54(14), 9765 1996

    Article  CAS  Google Scholar 

  31. X.W. Zhou, R.A. Johnson, H.N.G. Wadley: Misfit energy increasing dislocations in vapor deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 2004

    Article  Google Scholar 

  32. S.M. Foiles, J.J. Hoyt Computer Simulation of Bubble Growth in Metals Due to He Sandia National Laboratories 2001

    Book  Google Scholar 

  33. J.H. Rose, J.R. Smith, F. Guinea, J. Ferrante: Universal features of the equation of state of metals. Phys. Rev. B 29(6), 2963 1984

    Article  CAS  Google Scholar 

  34. J.A. Zimmerman Computer Simulation of Boundary Effects on Bubble Growth in Metals Due to He Sandia National Laboratories 2003

    Book  Google Scholar 

  35. ParaDyn, 2007, available online at http://www.cs.sandia.gov/~sjplimp/.

  36. R.A. Johnson: Alloy models with the embedded atom method. Phys. Rev. B 39(17), 12554 1989

    Article  CAS  Google Scholar 

  37. S.M. Foiles: Application of the embedded atom method to liquid transition metals. Phys. Rev. B 32(6), 3409 1985

    Article  CAS  Google Scholar 

  38. M.W. Finnis, J.E. Sinclair: A simple empirical N body potential for transition metals. Philos. Mag. A 50(1), 45 1984

    Article  CAS  Google Scholar 

  39. A. Prince: Alloy Phase Equilibria Elsevier Publishing Co. Amsterdam 1966

    Book  Google Scholar 

  40. A.S. Richard: Thermodynamics of Solids John Wiley & Sons New York 1972

    Google Scholar 

  41. R.B. Schwarz, H.T. Bach, U. Harms, D. Tuggle: Elastic properties of Pd–hydrogen, Pd–deuterium, and Pd–tritium single crystals. Acta Mater. 53(3), 569 2005

    Article  CAS  Google Scholar 

  42. International Critical Tables of Numerical Data Physics, Chemistry and Technology 1st ed. National Research Council, edited by E.W. Washburn and C.J. West, Vol. 7, McGraw-Hill Book Co. New York 1930

  43. CRC Handbook of Chemistry and Physics CRC Press Cleveland, OH 1977

  44. R. Caputo, A. Alavi: Where do the H atoms reside in PdHx systems? Mol. Phys. 101(11), 1781 2003

    Article  CAS  Google Scholar 

  45. Wolfram Research Inc., 2007, available online at: http://www.wolfram.com/products/mathematica/index.html.

  46. Y. Sakamoto, K. Yuwasa, K. Hirayama: X-ray investigation of the absorption of hydrogen by several palladium and nickel solid solution alloys. J. Less-Comm. Metals 88, 115 1982

    Article  CAS  Google Scholar 

  47. Y. Fukai, H. Sugimoto: Diffusion of hydrogen in metals. Adv. Phys. 34(2), 263 1985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge input provided by discussions with M.I. Baskes, D.F. Cowgill, S.M. Foiles, J. Griffin, C.D. Lorenz, M.G. Martin, T.K. Mattsson, S.L. Robinson, R.B. Schwarz, C.S. Snow, G.C. Story, and R.T. Walters. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.W. Zhou.

Appendix: High-Order Polynomial Palladium EAM Functions

Appendix: High-Order Polynomial Palladium EAM Functions

For easy use within our potential fitting program, the palladium EAM functions have been converted to high-order polynomial functions:

((A1))

where ˜ρ ≡ ρ/50.

((A2))

where

and ˜rr/5.

((A3))

Note that embedding energy is expressed in terms of ˜ρ ≡ ρ/50 and electron density and pair energy are expressed in terms of ˜rr/5. This is necessary to improve the precision required by the high order polynomial functions. Eqs. (A2) and (A3) are valid only within the cutoff distance rc,PdPd = 5.35 Å.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Zimmerman, J., Wong, B. et al. An embedded-atom method interatomic potential for Pd–H alloys. Journal of Materials Research 23, 704–718 (2008). https://doi.org/10.1557/JMR.2008.0090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0090

Navigation