Skip to main content
Log in

Dielectric and piezoelectric properties of niobium-modified BiInO3–PbTiO3 perovskite ceramics with high Curie temperatures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Piezoelectric ceramics with TC < 500 °C were projected in the perovskite BiInO3–PbTiO3 (BIPT) system based on their low tolerance factor (∼0.884). However, a stable perovskite phase could be synthesized only when the PbTiO3 (PT) content was greater than 75%. Furthermore, the large tetragonality (c/a < 1.08) and low electrical resistivity made the ceramics difficult to pole. Niobium-modified BIPT ceramics with PT contents of 80% and 85% were found to possess significantly lower dielectric loss at elevated temperatures, making it possible to polarize the materials. Piezoelectric properties were measured for a BIPT85–1.5 mol% Nb composition with a Curie temperature of 542 °C; the longitudinal piezoelectric coefficient and coercive field were found to be 60 pC/N and 125 kV/cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Shrout, R.E. Eitel, and C.A. Randall: High performance, high temperature perovskite piezoelectric ceramics, in Piezoelectric Materials in Devices, edited by N. Setter (Ceramics Laboratory, Switzerland, 2002), p. 413.

    Google Scholar 

  2. B. Jaffe, W.R. Cook, and H. Jaffe: Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  3. D.A. Berlincourt, D.R. Curran, and H. Jaffe: Physical Acoustics: Principles and methods, edited by W.P. Mason (Academic Press, New York, 1964), p. 202.

  4. R. Eitel, C.A. Randall, T.R. Shrout, P. Rehrig, W. Hackenberger, and S.E. Park: New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3–PbTiO3 ceramics. Jpn. J. Appl. Phys. 40, 5999 (2001).

    Article  CAS  Google Scholar 

  5. O. Muller, and R. Roy: The Major Ternary Structural Families (Springer-Verlag, New York, 1974), p. 221.

    Book  Google Scholar 

  6. Yu N.V. Veneutsev: Ferroelectrically active sublattices and phase transitions in perovskite type crystals, in Proc. JSSF-2, Kyoto, 1980. J. Phys. Soc. Jpn. Suppl. B 49, 49 (1980).

    Google Scholar 

  7. R. Eitel, C. Randall, T. Shrout, and S. Park: Preparation and characterization of high temperature perovskite ferroelectrics in the solid solution (1 − x)BiScO3xPbTiO3. Jpn. J. Appl. Phys. 41, 2099 (2002).

    Article  CAS  Google Scholar 

  8. C.A. Randall, R.E. Eitel, and T.R. Shrout: Transmission electron microscopy investigation of high temperature BiScO3–PbTiO3 piezoelectric ceramic system. J. Appl. Phys. 93, 9271 (2003).

    Article  CAS  Google Scholar 

  9. S.J. Zhang, L. Lebrun, S. Rhee, R. Eitel, C.A. Randall, and T.R. Shrout: Crystal growth and characterization of new high Curie temperature (1 − x)BiScO3xPbTiO3 single crystals. J. Cryst. Growth 236, 210 (2002).

    Article  CAS  Google Scholar 

  10. Y. Inaguma, A. Miyaguchi, M. Yoshiha, T. Katsumata, Y. Shimojo, R. Wang, and T. Sekiya: High pressure synthesis and ferroelectric properties in perovskite-type BiScO3–PbTiO3 solid solution. J. Appl. Phys. 95, 231 (2004).

    Article  CAS  Google Scholar 

  11. S.J. Zhang, C.A. Randall, and T.R. Shrout: Electromechanical properties in rhombohedral BiScO3–PbTiO3 single crystals as a function of temperature. Jpn. J. Appl. Phys. 42, L1152 (2003).

    Article  Google Scholar 

  12. S.J. Zhang, C.A. Randall, and T.R. Shrout: High Curie temperature piezocrystals in the BiScO3–PbTiO3 perovskite system. Appl. Phys. Lett. 83, 3150 (2003).

    Article  CAS  Google Scholar 

  13. R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, and I. Levin: Phase diagram of perovskite system (1 − x)BiScO3xPbTiO3. J. Appl. Phys. 96, 2828 (2004).

    Article  CAS  Google Scholar 

  14. R.E. Eitel, C.A. Randall, and T.R. Shrout: Tailoring properties and performance of (1 − x)BiScO3xPbTiO3 based piezoceramics by lanthanum substitution. Jpn. J. Appl. Phys. 43, 8146 (2004).

    Article  CAS  Google Scholar 

  15. R.R. Duan, R.F. Speyer, E. Alberta, and T.R. Shrout: High Curie temperature perovskite BiInO3–PbTiO3 ceramics. J. Mater. Res. 19, 2185 (2004).

    Article  CAS  Google Scholar 

  16. IEEE Standard on Piezoelectricity, ANSI/IEE Std. (IEEE, New York) 176-1987.

  17. Y. Yamashita, K. Harada, Y. Hosono, S. Natsume, and N. Ichinose: Effects of B-site ions on the electromechanical-coupling factors of Pb(B_B_)O3–PbTiO3 piezoelectric materials. Jpn. J. Appl. Phys. 37, 5288 (1998).

    Article  CAS  Google Scholar 

  18. Electrical Measurement Method for Piezoelectric Ceramic Elements, EMAS-6100 (Standard of Electronic Materials Manufacture Association Japan, 1993).

  19. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed. (Addison Wesley, Reading, MA, 1978).

    Google Scholar 

  20. L. Zhang, R. Chu, S. Zhao, G. Li, and Q. Yin: Microstructure and electrical properties of niobium doped Bi4Ti3O12 layer-structured piezoelectric ceramics. Mater. Sci. Eng., B 116, 99 (2005).

    Article  Google Scholar 

  21. C.A. Randall, R.E. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, and I.M. Reaney: Investigation of a high TC piezoelectric system: (1 − x)Bi(Mg1/2Ti1/2)O3xPbTiO3. J. Appl. Phys. 95, 3633 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Xia, R., Randall, C.A. et al. Dielectric and piezoelectric properties of niobium-modified BiInO3–PbTiO3 perovskite ceramics with high Curie temperatures. Journal of Materials Research 20, 2067–2071 (2005). https://doi.org/10.1557/JMR.2005.0254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0254

Navigation