Skip to main content
Log in

An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The world of nanomaterials has become the real world for most applications in the area of nanotechnology. As postsynthesis handling of materials at the nanoscale level is impractical, nanomaterials must be synthesized directly as part of a device or circuit. The demands of nanotechnology have led to modifications in the design of transmission electron microscopes (TEMs) that enable in situ synthesis and characterization simultaneously. The environmental TEM (ETEM) is one such modified instrument that has often been used to follow gas–solid and/or liquid–solid interactions at elevated temperatures. Although the history and development of the ETEM, also called the controlled atmosphere or environmental cell TEM, is as old as transmission electron microscopy itself, developments in the design of medium-voltage TEMs have succeeded in bringing resolutions down to the subnanometer level. A modern ETEM equipped with a field-emission gun, energy filter or electron energy-loss spectrometer, scanning transmission electron microscopy coils, and bright-field and dark-field detectors can be a versatile tool for understanding chemical processes at the nanometer level. This article reviews the design and operations of a dedicated ETEM. Its applications range from the in situ characterization of reaction steps, such as oxidation-reduction and hydroxylation, to the in situ synthesis of nanomaterials, such as quantum dots and carbon nanotubes. Some examples of the current and the future applications for the synthesis and characterization of nanomaterials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Dahmen, S. Hagege, F. Faudot, T. Radetic, and E. Johnson: Observation of interface pre-melting at grain-boundary precipitates of Pb in Al. Philos. Mag. 84, 2651 (2004).

    Article  CAS  Google Scholar 

  2. Y. Senda, K. Sasaki, and H. Saka: Melting temperature of a wedge-shaped thin crystal of tin. Philos. Mag. 84, 2635 (2004).

    Article  CAS  Google Scholar 

  3. H. Tanaka, N. Hirashita, and R. Sinclair: Kinetic analysis of the C49-C54 phase transformation in TiSi2 thin films by in situ observation. Jap. J. Appl. Phys. 37, 4284 (1998).

    Article  CAS  Google Scholar 

  4. P.A. Crozier, Rou-Jane Liu, C.M. Smith, D.A. Hucul, J. Blackson, and G. Salaita: In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration process. Microsc. Microanal. 10, 77 (2004).

    Article  CAS  Google Scholar 

  5. A.G. Ramirez, T. Itoh, and R. Sinclair: Crystallization of amorphous carbon thin films in the presence of magnetic media. J. Appl. Phys. 85, 1508 (1999).

    Article  CAS  Google Scholar 

  6. A.M. Minor, E.T. Lilleeodden, E.A. Stach, and J.W. Morris, Jr.: In-situ transmission-electron-microscopy study of the nanoindentation behavior of Al. J. Electron. Mater. 31, 958 (2002).

    Article  CAS  Google Scholar 

  7. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Jr.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

    Article  CAS  Google Scholar 

  8. M.M.J. Treacy, A. Krishnan, and P.N. Yianilos: Inferring physical parameters from images of vibrating carbon nanotubes. Microsc. Microanal. 6, 317 (2000).

    Article  CAS  Google Scholar 

  9. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  10. P. Poncharal, Z.L. Wang, D. Ugrate, and W.A. de Heer: Electrostatic deflections and electrochemical resonances of carbon nanotubes. Science 283, 1513 (1999).

    CAS  Google Scholar 

  11. J. Cumings, A. Zettl, M.R. McCartney, and J.C.H. Spence: Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).

    Google Scholar 

  12. Z.L. Wang: New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497 (2003).

    CAS  Google Scholar 

  13. H. Poppa: High resolution, high speed ultrahigh vacuum microscopy. J. Vac. Sci. Technol. A 22, 1931 (2004).

    CAS  Google Scholar 

  14. P. Butler, and K. Hale: In situ gas-solid reactions, in Practical Methods in Electron Microscopy Vol. 9, (North Holland, Amsterdam, The Netherlands, 1981) pp. 239 and 309.

    Google Scholar 

  15. D.F. Parsons, V.R. Matricardi, R.C. Moretz, and J.N. Turner: Electron microscopy and diffraction of wet unstained and unfixed biological objects, in Advances in Biological and Medical Physics, Vol. 15, edited by J.H. Lawrence and J.W. Gofman (Academic Press, New York, NY, 1974) p. 161.

    CAS  Google Scholar 

  16. D.L. Allison: Environmental devices in electron microscopy, in Principles and Techniques in Electron Microscopy, Biological Applications, Vol. 5, edited by M.A. Hayat (Van Nostrand Reinhold, New York, NY, 1975) p. 52.

    Google Scholar 

  17. T.L. Daulton, B.J. Little, K. Lowe, and J. Jones-Meehan: In situ environmental cell-transmission-electron-microscopy study of microbial reduction of chromium (VI) using electron energy loss spectroscopy. Microsc. Microanal. 7, 470 (2001).

    CAS  Google Scholar 

  18. H. Suda, K. Ishikawa, and A. Fukami: Improvement of spacer for injection of TOW solutions in environmental cell. J. Electron Microsc. 39, 317 (1990).

    Google Scholar 

  19. G.M. Parkinson: High resolution, in situ controlled atmosphere transmission electron microscopy (CTEM) of heterogeneous catalysts. Catal. Lett. 2, 303 (1989).

    CAS  Google Scholar 

  20. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, and F.M. Rosss: Dynamic microscopy of nanoscale cluster growth at solid-liquid interface. Nat. Mater. 2(8), 532 (2003).

    CAS  Google Scholar 

  21. P.L. Gai: Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).

    CAS  Google Scholar 

  22. H. Hashimoto, T. Naiki, T. Etoch, and K. Fujiwara: High temperature gas reaction specimen chamber for an electron microscope. Jap. J. Appl. Phys. 7, 946 (1968).

    Google Scholar 

  23. H.M. Flower: High voltage electron microscopy of environmental reactions. J. Microsc. 97, 171 (1973).

    Google Scholar 

  24. R.C. Doole, G.M. Parkinson, and J.M. Stead: A high resolution gas reaction cell for JEM 4000. Inst. Phys. Conf. Ser. 119, 157 (1991).

    CAS  Google Scholar 

  25. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, and H.K. Birnbaum: An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).

    CAS  Google Scholar 

  26. E.D. Boyes, P.L. Gai, and L.G. Hanna: Controlled environment (ECELL) TEM for dynamic in-situ reaction studies with HREM lattice imaging. Proc. Mater. Res. Soc. 404, 53 (1996).

    CAS  Google Scholar 

  27. R. Sharma, and K. Weiss: Development of a TEM to study in situ structural and chemical changes at atomic level during gas solid interaction at elevated temperatures. Microsc. Res. Tech. 42, 270 (1998).

    CAS  Google Scholar 

  28. R. Sharma: Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494 (2001).

    CAS  Google Scholar 

  29. P.R. Swann and N.J. Tighe: Performance of differentially pumped environmental cell in the AE1 EM7, in Proc. 5th Eur. Reg. Cong. Electron Microscopy, 436 (1972).

    Google Scholar 

  30. I. Robertson, and D. Teter: Controlled environment transmission electron microscopy. Microsc. Res. Tech. 42, 260 (1998).

    Article  CAS  Google Scholar 

  31. T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsoe, and J.H. Jacobsen: Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).

    Article  CAS  Google Scholar 

  32. R. Sharma, P.A. Crozier, R. Marx, and K. Weiss: An environmental transmission electron microscope for in situ observation of chemical processes at the nanometer level. Microsc. Microanal. 912 CD (2003).

    Google Scholar 

  33. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, and R.J. Waite: Nucleation and growth of carbon deposits from the Ni catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972).

    Article  CAS  Google Scholar 

  34. R.T.K. Baker, P.S. Harris, R.B. Thomas, and R.J. Waite: Formation of filamentous car bon from iron, cobalt and chromium catalyzed deposition of acetylene. J. Catal. 30, 315 (1973).

    Article  Google Scholar 

  35. R.T.K. Baker: Catalytic growth of carbon filaments. Carbon 27, 315 (1989).

    Article  CAS  Google Scholar 

  36. R.T.K. Baker, J.J. Chludzinski, Jr., N.S. Dudash, and A.J. Simoens: The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum. Carbon 21, 463 (1983).

    Article  CAS  Google Scholar 

  37. P.L. Gai and E.D. Boyes: Defects in oxide catalysts: Fundamental studies of catalysis in action. Catal. Rev. Sci. Eng. 34, 1 (1992).

    Article  Google Scholar 

  38. P.L. Gai, and K. Kourtakis: Solid state defect mechanism in vanadyl pyrophosphate catalyst-implications for selective oxidation. Science 267, 661 (1995).

    Article  CAS  Google Scholar 

  39. K. Kourtakis and P.L. Gai: Novel microstructures and reactivity for n-butane oxidation: advances and challenges in vapor phase alkane oxidation catalysis. J. Mol. Catal. A220, 93 (2004).

    Article  CAS  Google Scholar 

  40. A.K. Datye, D.S. Kalakkad, E. Volkl, and L.F. Allard: Electron holography of catalysts, in Abstracts of Papers of the American Chemical Society 209, 120 (1995).

    Google Scholar 

  41. P.A. Crozier and A.K. Datye: Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Stud. Surf. Sci. Catal. 130, 3119 (2000).

    Google Scholar 

  42. P.A. Crozier, R. Sharma, and A.K. Datye: Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278 (1998).

    CAS  Google Scholar 

  43. P.L. Gai and E.D. Boyes: In Electron Microscopy of heterogeneous catalysis. Series in Microscopy and Materials Science (Institute of Physics Publishing, Bristol, Philadelphia, PA, 2003).

    Book  Google Scholar 

  44. H.K. Birnbaum, and P. Sofronis: Hydrogen enhanced local plasticity— a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 (1993).

    Article  Google Scholar 

  45. D.F. Teter, I.M. Robertson, and H.K. Birbaum: The effects of hydrogen on the deformation and fracture of titanium. Acta Mater. 49, 4313 (2001).

    Article  CAS  Google Scholar 

  46. I.M. Robertson: The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671 (2001).

    Article  Google Scholar 

  47. Z. Atzmon, R. Sharma, J.W. Mayer, and S.Q. Hong: An in situ transmission-electron-microscopy study during NH3 ambient annealing of Cu-Cr thin films, in Mechanisms of Thin Film Evolution, edited by S.M. Yalisove, C.V. Thompson, and D.J. Eaglesham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 245.

    CAS  Google Scholar 

  48. Z. Atzmon, R. Sharma, S.W. Russell, and J.W. Mayer: Kinetics of copper grain growth during nitridation of Cu-Cr and Cu-Ti thin films by in situ TEM. Proc. Mater. Res. Soc. Symp. 337, 619 (1994).

    Article  Google Scholar 

  49. P.A. Crozier, V.P. Oleshko, A.D. Weswood, and R.D. Cantrell: In situ environmental transmission electron microscopy of gas phase Ziegler-Natta catalytic polymerization of propylene. Inst. Phys. Conf. Ser. 168, 393 (2001).

    CAS  Google Scholar 

  50. V.P. Oleshko, P.A. Crozier, R.D. Cantrell, and A.D. Westwood: In situ real time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J. Electron Microsc. 51, S27 (2002).

    Google Scholar 

  51. N. Kohyama, K. Fukushima, and A. Kukami: Oservation of hydrated form of clay-minerals by means of environmental cell method. J. Electron Microsc. 28, 258 (1979).

    Google Scholar 

  52. M.J. McKelvy, R. Sharma, A.V.G. Chizmeshya, R.W. Carpenter, and K. Streib: Magnesium hydroxide dehydroxylation: In situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 13, 921 (2001).

    CAS  Google Scholar 

  53. R. Sharma, M.J. McKelvy, H. Béarat, A.V.G. Chizmeshya, and R.W. Carpenter: In situ nanoscale observations of the Mg(OH)2 dehydroxylation and rehydroxylation mechanisms. Philos. Mag. 84, 2711 (2004).

    CAS  Google Scholar 

  54. P.A. Rou-Jane Liu, P.A. Crozier, C.M. Smith, D.A. Hucul, J. Blackson, and G. Salaita: Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalyst. Appl. Catal., A 282, 111 (2005).

    CAS  Google Scholar 

  55. M. Gajdadziska-Josifoviska, R. Plass, M.A. Schofield, D.R. Gese, and R. Sharma: In situ and ex situ electron microscopy studies of polar oxide surfaces with rock-salt structure. J. Elelctron Microsc. 51, S13 (2002).

    Google Scholar 

  56. M. Gajdardziska-Josifovska, and R. Sharma: Interaction of oxide surfaces with water: Environmental transmission electron microscopy of MgO hydroxylation. Microsc. Microanal. (in press).

  57. M.J. Sayagués, and J.L. Hutchison: From Nb12O29 to Nb22O54 in a controlled environment high resolution microscope. J. Solid State Chem. 146, 202 (1999).

    Google Scholar 

  58. M.J. Sayagués and J.L. Hutchison: A new niobium tungsten oxide as a result of an in situ reaction in a gas reaction cell microscope. J. Solid State Chem. 143, 33 (1999).

    Google Scholar 

  59. R. Sharma and P.A. Crozier: In situ electron microscopy of CeO2 and CeO2-ZrO2 reduction. Microsc. Microanal. 161, 569 (1999).

    CAS  Google Scholar 

  60. R. Sharma, P.A. Crozier, Z.C. Kang, and L. Eyring: Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philos. Mag. 84, 2731 (2004).

    CAS  Google Scholar 

  61. C. Lopez-Cartes, S. Bernal, J.J. Calvino, M.A. Cauqui, G. Blanco, J.A. Perez-Omil, J.M. Pintado, S. Helveg, and P.L. Hansen: In situ transmission electron microscopy investigation of Ce (IV) and Pr (IV) reducibility in a Rh (1%)/Ce0.8Pr0.2O(2-x) catalyst. Chem. Commun. 5, 644 (2003).

    Google Scholar 

  62. Z.C. Kang, J. Jhang, and L. Eyring: The structural principles that underlie the higher oxides of rare earths. Z. Anorg. Allg. Chem. 622, 465 (1996).

    CAS  Google Scholar 

  63. P. Knappe, and L. Eyring: Preparation and electron microscopy of intermediate phases in the interval Ce7O12-Ce11O20. J. Solid State Chem. 58, 312 (1985).

    CAS  Google Scholar 

  64. J. Drucker, R. Sharma, J. Kouvetakis, and K. Weiss: In situ, real time observation of Al chemical vapor deposition on SiO2 in an environmental transmission electron microscope. J. Appl. Phys. 77, 2846 (1995).

    CAS  Google Scholar 

  65. J. Drucker, R. Sharma, J. Kouvetakis, and K. Weiss: In-situ study of electron beam induced chemical vapor deposition of Au in an environmental TEM, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by R. Sharma, P.L. Gai, M. Gajdardziska-Josifovska, R. Sinclair, and L.J. Whitman (Mater. Res. Soc. Symp. Proc. 404, Pittsburgh, PA, 1996), p. 75.

    CAS  Google Scholar 

  66. F.M. Ross, M. Kammler, M.C. Reuter, and R. Hull: In-situ observations of self-assembled island nucleation on patterned substrates. Philos. Mag. 84, 2687 (2004).

    CAS  Google Scholar 

  67. H. Jiang, C.N. Borca, B. Xu, and B.W. Robertson: Fabrication of 2- and 3-dimensional nanostructures. Int. J. Mod. Phys. B15, 3207 (2001).

    Google Scholar 

  68. K. Mitsuishi, M. Shimojo, M. Han, and K. Furuya: Electronbeam- induced deposition using a subnanometer-sized probe of high-energy electrons. Appl. Phys. Lett. 83, 2064 (2003).

    CAS  Google Scholar 

  69. I. Utke, T. Bret, D. Laub, P. Buffat, L. Scandella, and P. Hoffman: Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73-74, 553 (2004).

    CAS  Google Scholar 

  70. P.A. Crozier, J. Tolle, J. Kouvetakis, and C. Ritter: Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett. 84, 3441 (2004).

    Article  CAS  Google Scholar 

  71. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, and J. Norskov: Atomicscale imaging of carbon nanofibre growth. Nature 427, 426 (2004).

    Article  CAS  Google Scholar 

  72. R. Sharma, and Z. Iqbal: In situ observations of carbon nanotube formation using environmental electron microscopy (ETEM). Appl. Phys. Lett. 84, 990 (2003).

    Article  CAS  Google Scholar 

  73. R. Sharma, P. Rez, M.M.J. Treacy, and S.J. Stuart: In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. (in press).

  74. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne G. Möbus, C.J.D. Hetherington, R.C. Doole, F. Hosokawa, P. Hartel, and M. Haider: A Cs corrected HRTEM: Initial applications in materials science. JEOL News 37E, 2 (2002).

    Google Scholar 

  75. R. Sharma and P.A. Crozier: Environmental transmission electron microscopy in nanotechnology, in Handbook of Microscopy for Nanotechnology, edited by N. Yao and Z.L. Wang (Kluwer Academic Publishers, Boston/New York/London, 2005, 1974) p. 531.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. Journal of Materials Research 20, 1695–1707 (2005). https://doi.org/10.1557/JMR.2005.0241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0241

Navigation