Skip to main content
Log in

In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A unique straining device, fabricated using microlithographic techniques, has been developed to permit real-time investigation in the transmission electron microscope (TEM) of the deformation and failure mechanisms in ultrafine-grained aluminum. The tensile specimen is a freestanding thin film with a columnar microstructure that has a uniform cross-section (100 × 0.125 µm) and a gauge length of 300 µm. In situ TEM straining experiments show the fracture mode is intergranular with no accompanying general plasticity. Propagating cracks were halted at large grains, and crack blunting occurred through grain-boundary-mediated processes. The blunting process was accompanied by dislocation emission and deformation twinning in the grain responsible for arresting the crack. Voids or microcracks nucleated and grew on grain boundaries ahead of the arrested crack, and crack advance occurred through linkage of the microcracks and the primary crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.V. Swygenhoven, M. Spaczer, D. Farkas, and A. Caro: The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular-dynamics computer simulation. Nanostruc. Mater. 12, 323 (1999).

    Google Scholar 

  2. H.V. Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22 (1999).

    Google Scholar 

  3. H.V. Swygenhoven, D. Farkas, and A. Caro: Grain-boundary structures in polycrystalline metals at the nanoscale. Phys. Rev. B 62, 831 (2000).

    Google Scholar 

  4. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49, 2713 (2001).

    CAS  Google Scholar 

  5. D. Farkas, H. Van Swygenhoven, and P.M. Derlet: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101 (2002).

    Google Scholar 

  6. K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, and D.E. Wolf: Moleculardynamics study of mechanical deformation in nano-crystalline aluminum. Metall. Mater. Trans. A 35A, 2719 (2004).

    CAS  Google Scholar 

  7. A.G. Froseth, P.M. Derlet, and H. Van Swygenhoven: Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance. Acta Mater. 52, 5863 (2004).

    CAS  Google Scholar 

  8. Y. Qi and Y-T. Cheng: In Molecular Dynamic Simulation of Deformation and Fracture in Nanocrystalline Ag and Nanocomposite AgNi, Presented at the MRS 2004 Fall Meeting, Boston, MA. V6.7.

  9. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).

    CAS  Google Scholar 

  10. H.V. Swygenhoven, P.M. Derlet, and A.G. Frøseth: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).

    Google Scholar 

  11. P.M. Derlet, and H. Van Swygenhoven: The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation. Philos. Mag. 82, 1 (2002).

    CAS  Google Scholar 

  12. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Forstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    CAS  Google Scholar 

  13. R. Mitra, W-A. Chiou, and J.R. Weertman: In situ study of deformation mechanisms in sputtered free-standing nanocrystalline nickel films. J. Mater. Res. 19, 1029 (2004).

    CAS  Google Scholar 

  14. W.W. Milligan, S.A. Hackney, M. Ke, and E.C. Aifantis: In situ studies of deformation and fracture in nanophase materials. Nanostruc. Mater. 2, 267 (1993).

    CAS  Google Scholar 

  15. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    CAS  Google Scholar 

  16. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).

    CAS  Google Scholar 

  17. R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 (2003).

    CAS  Google Scholar 

  18. M.A. Haque and M.T.A. Saif: Deformation mechanisms in freestanding nanoscale thin films: a quantitative in-situ TEM study. Proc. Natl. Acad. Sci. U.S.A. 101, 6335 (2004).

    CAS  Google Scholar 

  19. M.A. Haque and M.T.A. Saif: A review of MEMS-based microscale and nanoscale tensile and bending testing. Expt. Mech. 43, 248 (2003).

    Google Scholar 

  20. M.A. Haque and M.T.A. Saif: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A. 97–98, 239 (2002).

    Google Scholar 

  21. M.A. Haque and M.T.A. Saif: Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10, 146 (2001).

    Google Scholar 

  22. M.T.A. Saif, S. Zhang, A. Haque, and K.J. Hsia: Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Mater. 50, 2779 (2002).

    CAS  Google Scholar 

  23. The dynamic events can be difficult to appreciate from the static images presented in published images. Representative videos showing the events described in the manuscript can be found at http://robertson.mse.uiuc.edu/Hattar/hattar.htm.

  24. M.A. Haque and M.T.A. Saif: Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension. Scripta Mater. 47, 863 (2002).

    CAS  Google Scholar 

  25. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: HVEM in situ deformation study of nickel doped with sulfur. Acta Metall. 37, 407 (1989).

    CAS  Google Scholar 

  26. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scripta Mater. 49, 297 (2003).

    CAS  Google Scholar 

  27. H. Van Swygenhoven, F. Dalla Torre, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).

    Google Scholar 

  28. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).

    CAS  Google Scholar 

  29. Y.M. Wang, and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 375–377, 46 (2004).

    Google Scholar 

  30. F. Ebrahimi, Q. Zhai, and D. Kong: Deformation and fracture of electrodeposited copper. Scripta Mater. 39, 315 (1998).

    CAS  Google Scholar 

  31. K. Hattar and I.M. Robertson (2005, unpublished).

  32. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632 (2003).

    CAS  Google Scholar 

  33. I.M. Robertson: Microtwin formation in deformed nickel. Philos. Mag. A. Phys. Condens. Matter Defects Mech. Prop. 54, 821 (1986).

    CAS  Google Scholar 

  34. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, and E.J. Lavernia: Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85, 5049 (2004).

    CAS  Google Scholar 

  35. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Arzt: Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater. 47, 2865 (1999).

    CAS  Google Scholar 

  36. T.J. Balk, G. Dehm, and E. Arzt: Parallel glide: A fundamentally different type of dislocation motion in ultrathin metal films, in Multiscale Phenomena in Materials—Experiments and Modeling Related to Mechanical Behavior, edited by H.M. Zbib, D.H. Lassila, L.E. Levine, and K.J. Hemker (Mater. Res. Soc. Symp. Proc. 779, Warrendale, PA, 2003), p. 87.

    Google Scholar 

  37. W.D. Nix: Mechanical properties of thin films. Metall. Mater. Trans. A. 20A, 2217 (1989).

    CAS  Google Scholar 

  38. L.B. Freund: Stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech., Trans. ASME 54, 553 (1987).

    CAS  Google Scholar 

  39. K. Hattar, J. Han, T. Saif, and I.M. Robertson: Development and application of a MEMS-based in situ TEM straining device for ultra-fine grained metallic systems, in Conference Proceedings from the Microscopy and Microanlysis Society, edited by I.M. Anderson, R. Price, E. Hall, E. Clark, S. McKernan. (Cambridge University Press, Cambridge, U.K., 2004), p. 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Robertson.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattar, K., Han, J., Saif, M.T.A. et al. In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films. Journal of Materials Research 20, 1869–1877 (2005). https://doi.org/10.1557/JMR.2005.0233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0233

Navigation