Skip to main content
Log in

Patterning of sapphire substrates via a solid state conversion process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanopatterned sapphire substrates offer the potential for improved performance of devices based on III-V nitrides, e.g., light-emitting diodes and laser diodes. Due to the chemical stability and hardness of sapphire, however, surface patterning is a time-consuming and expensive process. Therefore, a novel method was utilized, whereby a surface coating of Al was deposited on a sapphire substrate and patterned into an array of square mesas using e-beam lithography. The lateral dimensions of each mesa were approximately 400 × 400 nm, and the average height was approximately 100 nm. The metallic film was subsequently subjected to an oxidation treatment at 450 °C for 24 h (a heat treatment which had previously been shown to minimize hillock formation). For the second heat treatment, which is necessary to induce migration of the sapphire interface and hence achieve solid state conversion, a range of temperatures (800–1350 °C) was explored. Results showed that for a heat-treatment time of 1 h, pattern retention was achieved for annealing temperatures less than or equal to 1250 °C. Successful epitaxial conversion of the patterned mesas to sapphire was confirmed using electron backscatter diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Orton and C.T. Foxon: Group III nitride semiconductors for short wavelength light-emitting devices, Rep. Prog. Phys. 61, 1 (1998).

    CAS  Google Scholar 

  2. S. Nakamura: InGaN-based laser diodes, Ann. Rev. Mater. 28, 125 (1998).

    CAS  Google Scholar 

  3. H. Kobayashi, Y. Toyoda, Y. Ohki, N. Matsuda and I. Akasaki: GaN blue light emitting diode (LED), National Tech. Rep. 28, 83 (1982).

    Google Scholar 

  4. I. Akasaki: Renaissance and progress in nitride semiconductors, J. Cryst. Growth 198, 885 (1999).

    Google Scholar 

  5. M. Pilkuhn: New development in semiconductor light emitting diodes for short wavelength, VDE-Verlag, Itg-Fachbericht 150, 71 (1998).

    Google Scholar 

  6. H. Morkoc: Defects in and applications of III-V nitride semiconductors, Mater. Sci. Forum 239, 119 (1997).

    Google Scholar 

  7. S. Keller, B.P. Keller, F.-Y. Wu, B. Heying, D. Kapolnek, J.S. Speck, U.K. Mishra and S.P. Denbaars: Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 68, 1525 (1996).

    CAS  Google Scholar 

  8. S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami and H.I. Erikson: Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition, Appl. Phys. Lett. 70, 420 (1997).

    CAS  Google Scholar 

  9. M. Hansen, P. Fini, M. Craven, B. Heying, J.S. Speck and S.P. Denbaars: Morphological and optical properties of InGaN laser diodes on laterally overgrown GaN, J. Cryst. Growth 234, 623 (2002).

    CAS  Google Scholar 

  10. C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui and A. Sakai: High-quality InGaN MQW on low-dislocation-density GaN substrate grown by hydride vapor- phase epitaxy, J. Cryst. Growth 189, 61 (1998).

    Article  Google Scholar 

  11. S. Nakamura: The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science 281, 956 (1998).

    Article  CAS  Google Scholar 

  12. J.A. Fretas Jr. and H.-O. Nam and R.F. Davis: Optical characterization of lateral epitaxial overgrown GaN layer, Appl. Phys. Lett. 72, 2990 (1998).

    Article  Google Scholar 

  13. I. Kidoguchi, A. Ishibashi, G. Sugahara and Y. Ban: Air-bridged lateral epitaxial overgrowth of GaN thin films, Appl. Phys. Lett. 76, 3768 (2000).

    Article  CAS  Google Scholar 

  14. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Masushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially overgrown GaN substrate, Appl. Phys. Lett. 72, 211 (1998).

    Article  CAS  Google Scholar 

  15. T. Mukai, K. Takekawa and S. Nakamura: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates, Jpn. J. Appl. Phys. 37, L839 (1998).

    Article  CAS  Google Scholar 

  16. A.M. Rokowski, P.Q. Miraglia, E.A. Preble, S. Einfeldt and R.F. Davis: Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN (0001) films via MOVPE, J. Cryst. Growth 241, 141 (2002).

    Article  Google Scholar 

  17. T. Zheleva, S. Smith, D. Thomson and K. Linthicum: Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films, J. Electron. Mater. 28 5 (1995).

    Article  Google Scholar 

  18. D. Zubia and S.D. Hersee: Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials, J. Appl. Phys. 85, 6492 (1999).

    Article  CAS  Google Scholar 

  19. D. Zubia, S.H. Zaidi, S.D. Hersee and S.R.J. Brueck: Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth, J. Vac. Sci. Technol. B 18, 3514 (2000).

    Article  CAS  Google Scholar 

  20. M. Kitayama, J.D. Powers, L. Kulinsky and A.M. Glaeser: Surface and interface properties of alumina via model studies of microdesigned interfaces, J. Eur. Ceram. Soc. 19, 2191 (1999).

    CAS  Google Scholar 

  21. Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.T. Lee, T.C. Wen, L.W. Wu, C.H. Kuo, C.S. Chang and S.C. Shei: Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs, J. Cryst. Growth 261, 466 (2004).

    CAS  Google Scholar 

  22. S.J. Chang, Y.C. Lin, Y.K. Su, C.S. Chang, T.C. Wen, S.C. Shei, J.C. Ke, C.W. Kuo, S.C. Chen and C.H. Liu: Nitride-based LEDs fabricated on patterned sapphire substrates, Solid-State Electron. 47, 1539 (2003).

    CAS  Google Scholar 

  23. H. Park and H.M. Chan: A novel process for the generation of pristine sapphire surfaces, Thin Solid Films 422, 135 (2002).

    CAS  Google Scholar 

  24. A.F. Beck, M.A. Heine, E.J. Caule and M.J. Pryor: The kinetics of the oxidation of Al in oxygen at high temperature, Corros. Sci. 7, 1 (1967).

    CAS  Google Scholar 

  25. T. Maruyama and W. Komatsu: Surface diffusion of single-crystal Al2O3 by scratch-smoothing method, J. Am. Ceram. Soc 58, 338 (1975).

    CAS  Google Scholar 

  26. S.J. Bennison and M.P. Harmer: Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina, J. Am. Ceram. Soc. 73, 833 (1990).

    CAS  Google Scholar 

  27. A.M. Glaeser: Investigating surface transport in ceramics using microdesigned interfaces, in Ceramic Interfaces: Properties and Applications (Inst. Mater. London, U.K., 1998), p. 241.

    Google Scholar 

  28. H.P. Bonzel: Surface morphologies: Transient and equilibrium shapes, Interface Sci. 9, 21 (2001).

    CAS  Google Scholar 

  29. W.W. Mullins: Flattening of nearly plane solid surfaces due to capillarity, J. Appl. Phys. 80, 77 (1959).

    Google Scholar 

  30. H.P. Bonzel and W.W. Mullins: Smoothing of perturbed vicinal surfaces, Surf. Sci. 350, 285 (1996).

    CAS  Google Scholar 

  31. S.X. Ren, E.A. Kenik, K.B. Alexander and A. Goyal: Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation, Microsc. Microanal. 4, 15 (1998).

    CAS  Google Scholar 

  32. K. Kanaya and S. Okayama: Penetration and energy loss theory of electrons in solid targets, J. Phys. D Appl. Phys. 5, 43 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Chan, H.M. & Vinci, R.P. Patterning of sapphire substrates via a solid state conversion process. Journal of Materials Research 20, 417–423 (2005). https://doi.org/10.1557/JMR.2005.0050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0050

Navigation