Skip to main content
Log in

Crystalline silica nanowires

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

α-Cristobalite nanowires of 50–100 nm diameter with lengths of several microns have been synthesized for the first time by the solid-state reaction of fumed silica and activated charcoal. The nanowires have been characterized by x-ray diffraction, electron microscopy, photoluminescence, and Raman scattering. The nanowires are single crystalline as revealed by high-resolution electron microscope images. The crystalline nanowires are clad by an amorphous silica sheath when the carbon to fumed silica ratio in the starting mixture is small. Use of hydrogen along with Ar helps to eliminate the amorphous sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zygmunt, F. Krumeich, and R. Nesper: Novel silica nanotubes with a high aspect ratio—synthesis and structural characterization. Adv. Mater. 15, 1538 (2003).

    Article  CAS  Google Scholar 

  2. C.N.R. Rao and M. Nath: Inorganic nanotubes. Dalton Trans. 1, 1 (2003).

    Article  Google Scholar 

  3. Z.L. Wang: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15, 432 (2003).

    Article  Google Scholar 

  4. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).

    Article  CAS  Google Scholar 

  5. B. Zheng, Y. Wu, P. Yang, and J. Liu: Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv. Mater. 14, 122 (2002).

    Article  Google Scholar 

  6. Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nano-wires. J. Am. Chem. Soc. 124, 1817 (2002).

    Article  CAS  Google Scholar 

  7. S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang: Microscopy study of the growth process and structural features of closely packed silica nanowires. J. Phys. Chem. B 107, 13029 (2003).

    Article  CAS  Google Scholar 

  8. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S.Q. Feng: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).

    Article  CAS  Google Scholar 

  9. J.Q. Hu, Y. Ziang, X.M. Meng, C.S. Lee, and S.T. Lee: A simple large-scale synthesis of very long aligned silica nanowires. Chem. Phys. Lett. 367, 339 (2003).

    Article  CAS  Google Scholar 

  10. Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, and L.D. Zhang: Synthesis and photoluminescence properties of amorphous SiOx nanowires. J. Mater. Chem. 12, 651 (2002).

    Article  CAS  Google Scholar 

  11. K.S. Wenger, D. Cornu, F. Chassagneux, T. Epicier, and P. Miele: Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom. J. Mater. Chem. 13, 3058 (2003).

    Article  Google Scholar 

  12. K.H. Lee, H.S. Yang, K.H. Baik, J. Bang, R.R. Vanfleet, and W. Sigmund: Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films. Chem. Phys. Lett. 383, 380 (2004).

    Article  CAS  Google Scholar 

  13. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang: Fabrication of silica nanotube arrays from vertical silicon nano-wire templates. J. Am. Chem. Soc. 125, 5254 (2003).

    Article  CAS  Google Scholar 

  14. C.N.R. Rao, G. Gundiah, F.L. Deepak, and A. Govindaraj: Carbon-assisted synthesis of inorganic nanowires. J. Mater. Chem. 14, 440 (2004).

    Article  CAS  Google Scholar 

  15. G. Gundiah, A. Govindaraj, and C.N.R. Rao: Nanowires, nano-belts and related nanostructures of Ga2O3. Chem. Phys. Lett. 351, 189 (2002).

    Article  CAS  Google Scholar 

  16. G. Gundiah, F.L. Deepak, A. Govindaraj, and C.N.R. Rao: Carbothermal synthesis of the nanostructures of Al2O3 and ZnO. Topics Cat. 24, 137 (2003).

    Article  CAS  Google Scholar 

  17. I.P. Swainson, M.T. Dove, and D.C. Palmer: Infrared and Raman spectroscopy studies of the αβ phase transition in cristobalite. Phys. Chem. Miner. 30, 353 (2003).

    Article  CAS  Google Scholar 

  18. V.N. Sigaev, E.N. Smelyanskaya, V.G. Plotnichenko, V.V. Koltashev, A.A. Volkov, and P. Pernice: Low-frequency band at 50 cm- in the Raman spectrum of cristobalite: Identification of similar structural motifs in glasses and crystals of similar composition. J. Non-Cryst. Solids, 248, 141 (1999).

    Article  CAS  Google Scholar 

  19. N.N. Greenwood and A. Earnshaw: Chemistry of the Elements, 2nd ed. (Butterworth Heinemann, U.K.), pp. 343.

  20. Y. Yin and Y. Xia: Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv. Funct. Mater. 12, 293 (2002).

    Article  CAS  Google Scholar 

  21. Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. R. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deepak, F.L., Gundiah, G., Seikh, M.M. et al. Crystalline silica nanowires. Journal of Materials Research 19, 2216–2220 (2004). https://doi.org/10.1557/JMR.2004.0285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0285

Navigation