Skip to main content
Log in

Synthesis and characterization of polyether structure carbon nitride

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nitride powder with an atomic N/C ratio of 1 has been prepared by reaction of cyanuric chloride with sodium metal. X-ray diffraction, Fourier transform infrared spectra, and x-ray photoelectron spectroscopic data provide substantial evidence for a graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by carbon-carbon atoms in the bulk carbon nitride. The electron-microscopy results reveal that the material is spherical particles with an average diameter of 50 nm. The optical properties and thermal stability are also characterized. Based on the experimental results, it is deduced that the structure of as-prepared material carbon nitride has polyether structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Cohen: Calculation of bulk moduli of diamond and Zinc-blende solids. Phys. Rev. B. 32, 7988 (1985).

    Article  CAS  Google Scholar 

  2. A.Y. Liu and M.L. Cohen: Prediction of new low compressibility solids. Science 245, 841 (1989).

    Article  CAS  Google Scholar 

  3. A.Y. Liu and M.L. Cohen: Structural properties and electronic structure of low-compressibility materials: beta-Si3N4 and hypothetical beta-C3N4. Phys. Rev. B. 41, 10727 (1990).

    Article  CAS  Google Scholar 

  4. L.A. Bursill, PJ. Lin, V.N. Gurarie, A.V. Orlov, and S. Prawer: Carbon nitride films produced by high-energy shock plasma deposition. J. Mater. Res. 10, 2277 (1995).

    Article  CAS  Google Scholar 

  5. K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Wansen, A.Y. Liu, and I.C. Wu: Observation of crystalline C3N4. Phys. Rev. B 49, 5034 (1994).

    Article  CAS  Google Scholar 

  6. CM. Niu, Y.Z. Lu, and CM. Lieber: Experimental realization of the covalent solid carbon nitride. Science 261, 334 (1993).

    Article  CAS  Google Scholar 

  7. J. Peng, Y.F. Zhang, S.Z. Yang, and G.H. Chen: C-N-x thin films deposited by pulsed high energy plasma bombardment. Mater. Lett. 27, 125 (1996).

    Article  CAS  Google Scholar 

  8. H.A. Ma, X.P. Jia, L.X. Chen, P.W. Zhu, W.L. Guo, X.B. Guo, Y.D. Wang, S.Q. Li, G.T. Zou, G. Zhang, and P. Bex: High-pressure pyrolysis study of C3N6H6: A route to preparing bulk C3N4. J. Phys.: Condens. Matter 14, 11269 (2002).

    CAS  Google Scholar 

  9. E. Wang: A new development in covalently bonded carbon nitride and related materials. Adv. Mater. 11, 1129 (1999).

    Article  Google Scholar 

  10. V.N. Khabashesku, J.L. Zimmerman, and J.L. Margrave: Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 12, 3264 (2000).

    Article  CAS  Google Scholar 

  11. J.L. Zimmerman, R. Williams, V.N. Khabashesku, and J.L. Margrave: Synthesis of spherical carbon nitride nanostruc-tures. Nano Lett. 1, 731 (2001).

    Article  CAS  Google Scholar 

  12. E.G. Gillan: Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906 (2000).

    Article  CAS  Google Scholar 

  13. D.R. Miller, J.J. Wang, and E.G. Gillan: Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem. 12, 2463 (2002).

    Article  CAS  Google Scholar 

  14. A. Andreyev, M. Akaishi, and D. Golberg: Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. Chem. Phys. Lett. 372, 635 (2003).

    Article  CAS  Google Scholar 

  15. Y.D. Li, Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, CY. Xu, F.Q. Li, and G. Zhou: A reduction-pyrolysis-catalysis synthesis of diamond. Science 281, 246 (1998).

    Article  CAS  Google Scholar 

  16. Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, and Y. Qian: A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am Chem. Soc. 122, 12383(2000).

    Article  CAS  Google Scholar 

  17. CY. Lee, H.T. Chiu, C.W. Peng, M.Y. Yen, Y.H. Chang, and C.S. Liu: Polygon building block route to sp(2)-carbon-based materials. Adv. Mater. 13,1105(2001).

    Article  CAS  Google Scholar 

  18. G. Hu, M.J. Cheng, D. Ma, and X.H. Bao: Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470 (2003).

    Article  CAS  Google Scholar 

  19. G. Hu, D. Ma, M.J. Cheng, L. Liu, and X.H. Bao: Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Comm. 17 1948–1949 (2002).

    Article  Google Scholar 

  20. K. Wygladacz, E. Malinowska, J. Szczygelska-Tao, and J. Biernat: Azothia- and azoxythiacrown ethers as ion carriers. Part I. Cationic response of membrane electrodes. J. Inclusion Phenom. Macrocyclic Chem. 39, 303 (2001).

    Article  CAS  Google Scholar 

  21. F. Vögtle: Supramolecular Chemistry: An Introduction (John Wiley & Sons, New York, 1993), p. 48.

    Google Scholar 

  22. S. Veprek, J. Wiedmann, and F.J. Glatz: Plasma chemical-vapor-deposition and properties of hard C3N4 thin-films. Vac. Sci. Tech-nol. A 13, 2914 (1995).

    Article  CAS  Google Scholar 

  23. D. Lin-Vien, N.B. Colthup, W.G Fatelley, and J.G. Grasselli: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  24. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W-K. Hsu, H. Terrones, Y-Q. Zhu, J.P. Hare, C.L. Reeves, A.K. Cheetham, M. Rühle, H.W. Kroto, and D.R.M. Walton: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).

    Article  CAS  Google Scholar 

  25. B.L. Ivanov, L.M. Zambov, G.T. Georgiev, C. Popov, M.F. Plass, and W. Kulisch: Low-pressure CVD of carbon nitride using triazine-containing precursors. Chem. Vap. Deposition 5, 265 (1999).

    Article  CAS  Google Scholar 

  26. D.N. Belton, S.J. Harris, S.J. Schemieg, A.M. Weiner, and T.A. Perry: In situ characterization of diamond nucleation and growth. Appl. Phys. Lett. 54, 416 (1989).

    Article  CAS  Google Scholar 

  27. J.M. Lupton, L.R. Hemingway, I.D.W. Samuel, and P.L. Burn: Electroluminescence from a new distyrylbenzene based triazine dendrimer. J. Mater. Chem. 10, 867 (2000).

    Article  CAS  Google Scholar 

  28. M. Zhang, Y. Nakayama, and M. Kume: Room-temperature electroluminescence from hydrogenated amorphous carbon nitride film. Solid State Commun. 110, 679 (1999).

    Article  CAS  Google Scholar 

  29. M. Zhang, Y. Nakayama, and S. Harada: Photoluminescence of hydrogenated amorphous carbon nitride films after ultraviolet light irradiation and thermal annealing. J. Appl. Phys. 86, 4971 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buxing Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, T., Huang, J., Liu, Z. et al. Synthesis and characterization of polyether structure carbon nitride. Journal of Materials Research 19, 1736–1741 (2004). https://doi.org/10.1557/JMR.2004.0249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0249

Navigation