Skip to main content
Log in

Enthalpy of formation of cubic yttria-stabilized hafnia

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The enthalpy of formation of cubic yttria-stabilized hafnia from monoclinic hafnia and C-type yttria was measured by oxide melt solution calorimetry. The enthalpies of formation fit a function independent of temperature and quadratic in composition. The enthalpies of transition from m-HfO2 and C-type YO1.5, to the cubic fluorite phase are 32.5 ± 1.7 kJ/mol and 38.0 ± 13.4 kJ/mol, respectively. The interaction parameter in the fluorite phase is strongly negative, -155.2 ± 10.2 kJ/mol, suggesting even stronger short range order than in ZrO2–YO1.5. Regular solution theory or any other model assuming random mixing on the cation and /or anion sublattice is not physically reasonable. A more complex solution model should be developed to be consistent with the new calorimetric data and observed phase relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, H.P. Li, and R. Stevens: Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).

    Article  CAS  Google Scholar 

  2. R. Stevens: An Introduction to Zirconia (Magnesium Electron, Twickenham, U.K., 1986).

    Google Scholar 

  3. K.E. Sickafus, J.A. Valdez, J.R. Williams, R.W. Grimes, and H.T. Hawkins: Radiation induced amorphization resistance in A2O3—BO2 oxides. Nucl. Instrum. Meth. B 191, 549 (2002).

    Article  CAS  Google Scholar 

  4. R.M. Wallace and G. Wilk: High-kappa gate dielectric materials. MRS Bull. 27, 192 (2002).

    Article  CAS  Google Scholar 

  5. A.S. Nowick and D.S. Park: in Superionic Conductors, edited by G.D Mahan and W.L. Roth (Plenum Press, New York, 1976).

    Google Scholar 

  6. V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, and F.M.B. Marques: Research on the electrochemistry of oxygen ion conductors in the former Soviet Union III. HfO2-, CeO2- and ThO2-based oxides. J. Solid State Electrochem. 4, 243 (2000).

    Article  CAS  Google Scholar 

  7. M.F. Trubelja and V.S. Stubican: Ionic conductivity of the fluorite-type hafnia-R2O3 solid solutions. Phys. Rev. B 59 2489 (1991).

    Article  CAS  Google Scholar 

  8. J.D. Schieltz, J.W. Patterson, and D.R. Wilder: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).

    Article  CAS  Google Scholar 

  9. T.H. Etsell and S.N. Flengas: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).

    Article  CAS  Google Scholar 

  10. J.A. Kilner and B.C.H. Steele: in Nonstoichiometric Oxides, edited by O.T. S0renson (Academic Press, New York, 1981), p. 254.

    Google Scholar 

  11. A. Navrotsky: Progress and New Directions in High Temperature Calorimetry Revisited. Phys Chem. Miner 24, 222 (1997).

    Article  CAS  Google Scholar 

  12. K.B. Helean and A. Navrotsky: Oxide Melt Solution Calorimetry of Rare Earth Oxides: Techniques, Problems, Cross-Checks, Successes, unpublished.

  13. J.M. McHale, G.R. Kowach, A. Navrotsky, and F.J. DiSalvo: Thermochemistry of Metal Nitrides in the Ca/Zn/N System. Chem. Eur. J. 2, 1514 (1996).

    Article  CAS  Google Scholar 

  14. D.W. Stacy and D.R. Wilder: J. Am. Ceram. Soc. 58, 285 (1975).

    Article  CAS  Google Scholar 

  15. R.L. Putnam: Formation Energetics of Ceramic Waste Materials for the Disposal of Surplus Weapons Plutonium. Ph.D. Dissertation, Princeton University, Princeton, NJ, 1999.

    Google Scholar 

  16. R.A. Robie, B.S. Hemingway, and J.R. Fisher: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull. 1452, 456 (1979).

    Google Scholar 

  17. S.V. Ushakov, K.B. Helean, A. Navrotsky, and L.A. Boatner: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).

    Article  CAS  Google Scholar 

  18. J.E. Lowther, J.K. Dewhurst, J.M. Leger, and J. Haines: Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485 (1999).

    Article  CAS  Google Scholar 

  19. A.S. Foster, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen: Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. B 65, 174117 (2002).

    Article  Google Scholar 

  20. T.A. Lee, A. Navrotsky, and I. Molodetsky: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 (2003).

    Article  CAS  Google Scholar 

  21. S. Katagiri, N. Ishizawa, and F. Marumo: A new high temperature modification of face-centered cubic Y2O3. Powder Diffraction 8, 60 (1993).

    Article  CAS  Google Scholar 

  22. C.R. Stanek and R.W. Grimes: Prediction of rare earth A2Hf2O7 pyrochlore phases. J. Am. Ceram. Soc. 85, 2139 (2002).

    Article  CAS  Google Scholar 

  23. R.M. Caillet, C.H. Deportes, G. Robert, and G. Vitter: Structural study in system HfO2-Y2O3. Rev. Int. Haut. Temp. Refract. 4, 269 (1967).

    CAS  Google Scholar 

  24. M. Duclot, I. Vicat, and C.H. Deportes: Mise en evidence et etude de la phase ordonnée Y2Hf7O17 dans le système HfO2—Y2O3. J. Solid Sate Chem. 2, 236 (1970).

    Article  CAS  Google Scholar 

  25. R. Hannon: Phase Equilibria in the Hafnia-Yttria System and Refinement of Some Zirconia Binary Systems. M.S. Dissertation, The Pennsylvania State University, State College, PA, 1985.

    Google Scholar 

  26. J.P. Goff, W. Hays, S. Hull, M.T. Hutchings, and K.N. Clauseen: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys.Rev.B 59, 14202 (1999).

    Article  CAS  Google Scholar 

  27. D. Steele and B.E.F. Fender: The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering. J. Phys. C: Solid State Phys. 7, 1 (1974).

    Article  CAS  Google Scholar 

  28. I.R. Gibson and J.T.S. Irvine: Study of Order/Disorder Transition in Yttria-stabilised Zironia by Neutron Diffraction. J. Mater. Chem. 6, 895 (1996).

    Article  CAS  Google Scholar 

  29. J.C. Rao, Y. Zhou, and D.X. Li: L12- and L10-like cation-ordered structures in ZrO2-Y2O3 ceramics. J. Mater. Res. 16, 1806 (2001).

    Article  CAS  Google Scholar 

  30. J.D. Schieltz, J.W. Patterson, and D.R. Wilder: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).

    Article  CAS  Google Scholar 

  31. L. Kaufman: Calculation of Quasibinary and Quasiternary Ceramic Systems, in User Applications of Alloy PhaseDiagrams, edited by L. Kaufman (ASM International, Materials Park, OH, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.A., Navrotsky, A. Enthalpy of formation of cubic yttria-stabilized hafnia. Journal of Materials Research 19, 1855–1861 (2004). https://doi.org/10.1557/JMR.2004.0234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0234

Navigation