Skip to main content
Log in

Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crystalline CuO and Cu2O nanowires with an average diameter of about 10 nm and lengths of several tens of microns were successfully synthesized, depending on synthesis conditions, using precursor Cu(OH)2 nanowires as templates. The crystallinity, purity, morphology, and structural features of the as-prepared nanowires were characterized by powder x-ray diffraction, selected-area electron diffraction, and high-resolution transmission electron microscopy. The results showed that the precursor polycrystalline Cu(OH)2 nanowires served as both reactants for the growth of CuO and Cu2O nanowires, and as templates controlling the size and shape of the resulting nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435 (1999).

    Article  CAS  Google Scholar 

  2. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, Nature 409, 66 (2001).

    Article  CAS  Google Scholar 

  3. M.S. Gudiksen, L.J. Lauhon, J.F. Wang, D.C. Smith, and C.M. Lieber, Nature 415, 617 (2002).

    Article  CAS  Google Scholar 

  4. X.F. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Nature 421, 241 (2003).

    Article  CAS  Google Scholar 

  5. P. Yang and C.M. Lieber, Science 273, 1836 (1996).

    Article  CAS  Google Scholar 

  6. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Article  CAS  Google Scholar 

  7. Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).

    Article  CAS  Google Scholar 

  8. Y. Jiang, Y. Wu, S.Y. Zhang, C.Y. Xu, W.C. Yu, Y. Xie, and Y.T. Qian, J. Am. Chem. Soc. 122, 12383 (2000).

    Article  CAS  Google Scholar 

  9. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, and P.M. Ajayan, Science 296, 884 (2002).

    Article  CAS  Google Scholar 

  10. P.M. Campbell, E.S. Snow, and J.P. Novak, Appl. Phys. Lett. 81, 4586 (2002).

    Article  CAS  Google Scholar 

  11. X. Peng, L. Manna, W. Yang, J. Wickham, E. Sher, A. Kadavanich, and A.P. Alivisatos, Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  12. A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  13. J.D. Holmes, K.P. Johnston, R.C. Doty, and B.A. Korgel, Science 287, 1471 (2000).

    Article  CAS  Google Scholar 

  14. L. Manna, E.C. Sher, and A.P. Alivisatos, J. Am. Chem. Soc. 122, 127000 (2000).

    Article  Google Scholar 

  15. V.F. Puntes, K.M. Krishnan, and A.P. Alivisatos, Science 291, 2115 (2001).

    Article  CAS  Google Scholar 

  16. M.S. Gudiksen and C.M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).

    Article  CAS  Google Scholar 

  17. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, and T.P. Russell, Science 290, 2126 (2000).

    Article  CAS  Google Scholar 

  18. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demöar, P. Stadelmann, F. Lëvy, and D. Mihailovic, Science 292, 479 (2001).

    Article  CAS  Google Scholar 

  19. R. Ma, Y. Bando, and T. Sato, Adv. Mater. 14, 366 (2002).

    Article  CAS  Google Scholar 

  20. M. Nath and C.N.R. Rao, Angew. Chem., Int. Ed. 41, 3451 (2002).

    Article  CAS  Google Scholar 

  21. Y. Rosenfeld Hacohen, R. Popovitz-Brio, E. Grunbaum, Y. Prior, and R. Tenne, Adv. Mater. 14, 1075 (2002).

    Article  CAS  Google Scholar 

  22. Z.R. Dai, Z.W. Pan, and Z.L. Wang, Adv. Fun. Mater. 13, 9 (2003).

    Article  Google Scholar 

  23. W.Z. Wang, G.H. Wang, X.S. Wang, Y.J. Zhan, Y.K. Liu, and C.L. Zheng, Adv. Mater. 14, 67 (2002).

    Article  CAS  Google Scholar 

  24. C.C. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1332 (2002).

    Google Scholar 

  25. A.E. Rakhshani, Solid-State Electron. 29, 7 (1986).

    Article  CAS  Google Scholar 

  26. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  CAS  Google Scholar 

  27. P. Poizot, S. Laruell, S. Grugeon, L. Dupont, and J.M. Taracon, Nature 407, 496 (2000).

    Article  CAS  Google Scholar 

  28. R.N. Briskman, Sol. Energy Mater. Sol. Cells 27, 361 (1992).

    Article  CAS  Google Scholar 

  29. D. Snoke, Science 273, 1351 (1996).

    Article  CAS  Google Scholar 

  30. JCPDS 13-420 (International Center for Diffraction Data, Newton Square, PA, 1972).

  31. JCPDS 5-661 (International Center for Diffraction Data, Newton Square, PA, 1967).

  32. JCPDS 5-666 (International Center for Diffraction Data, Newton Square, PA, 1967).

  33. R.R. Clemente, C.J. Serna, M. Ocana, and E. Matijevic, J. Cryst. Growth 143, 277 (1994).

    Article  Google Scholar 

  34. H.R. Oswald, A. Reiler, H.W. Schmalle, and F. Dubler, Acta Crystallogr., Sect. C 46, 2279 (1990).

    Article  Google Scholar 

  35. J. Luo, L. Zhang, and J. Zhu, Adv. Mater. 15, 579 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Grimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Varghese, O.K., Ruan, C. et al. Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. Journal of Materials Research 18, 2756–2759 (2003). https://doi.org/10.1557/JMR.2003.0384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0384

Navigation