Skip to main content
Log in

Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Grosso and G.J. de A.A.S. Illia, Adv. Mater. 13, 1085 (2001).

    Article  CAS  Google Scholar 

  2. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Science. 396, 152 (1998).

    CAS  Google Scholar 

  3. D.M. Antonelli, Microporous Mesoporous Mater. 30, 315 (1999).

    Article  CAS  Google Scholar 

  4. A. Mozalev, S. Magaino, and H. Imai, Electrochim. Acta 46, 2825 (2001).

    Article  CAS  Google Scholar 

  5. W. Deng, P. Bodart, M. Pruski, and B.H. Shanks, Microporous Mesoporous Mater. 52, 169 (2002).

    Article  CAS  Google Scholar 

  6. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, and E.C. Dickey, J. Mater. Res. 17, 1162 (2002).

    Article  CAS  Google Scholar 

  7. V.I. Parvulescu, H. Bonnemann, V. Parvulescu, U. Endruschat, A. Rufinska, Ch.W. Lehmann, B. Tesche, and G. Poncelet, Appl. Catal., A 214, 273 (2001).

    Article  CAS  Google Scholar 

  8. M.S. Wong, D.M. Antonelli, and J.Y. Ying, Nanostruct. Mater. 9, 165 (1997).

    Article  CAS  Google Scholar 

  9. T. Fujii, T. Yano, K. Nakamura, and O. Miyawaki, J. Membr. Sci. 187, 171 (2001).

    Article  CAS  Google Scholar 

  10. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Science 279, 548 (1998).

    Article  CAS  Google Scholar 

  11. M. Harada and M. Adachi, Adv. Mater. 12, 839 (2000).

    Article  CAS  Google Scholar 

  12. J. Zou, L. Pu, X. Bao, and D. Feng, Appl. Phys. Lett. 80, 1079 (2002).

    Article  CAS  Google Scholar 

  13. L. Pu, X. Bao, J. Zou, and D. Feng, Angew. Chem. 113, 1538 (2001).

    Article  Google Scholar 

  14. C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Chem. Commun. 16, 1582 (1997).

    Google Scholar 

  15. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  16. A. Michailowski, D. Aimaawlawi, G. Cheng, and M. Moskovits, Chem. Phys. Lett. 349, 1 (2001).

    Article  CAS  Google Scholar 

  17. P. Hoyer, Langmuir 12, 1411 (1996).

    Article  CAS  Google Scholar 

  18. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  19. Q. Zhang, L. Gao, J. Sun, and S. Zheng, Chem. Lett. 2, 226 (2002).

    Article  Google Scholar 

  20. M. Adachi, Y. Murata, M. Harada, and S. Yoshikawa, Chem. Lett. 8, 942 (2000).

    Article  Google Scholar 

  21. Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, and A. Gedanken, Chem. Commun. 24, 2616 (2001).

    Article  CAS  Google Scholar 

  22. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, J. Mater. Chem. 9, 2971 (1999).

    Article  CAS  Google Scholar 

  23. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 11, 1307 (1999).

    Article  CAS  Google Scholar 

  24. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L-M. Peng, Appl. Phys. Lett. 79, 3702 (2001).

    Article  CAS  Google Scholar 

  25. Q. Fan, B. McQuillin, D.D.C. Bradley, S. Whitelegg, A.B. Seddon, Chem. Phys. Lett. 347, 325 (2001).

    Article  CAS  Google Scholar 

  26. N-G. Park, J. van de Lagemaat, and A.J. Frank, J. Phys. Chem. B 104, 8989 (2000).

    Article  CAS  Google Scholar 

  27. D.T. On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Appl. Catal., A 222, 299 (2001).

    Article  Google Scholar 

  28. Z. Ma, Y. Yue, X. Deng, and Z. Gao, J. Mol. Catal., A 178, 97 (2002).

    Article  CAS  Google Scholar 

  29. X-S. Ye, Z-G. Xiao, D-S. Lin, S-Y. Huang, and Y-H. Man, Mater. Sci. and Eng., B 74, 133 (2000).

    Article  Google Scholar 

  30. L. Gao, Q. Li, Z. Song, and J. Wang, Sens. Actuators, B 71, 179 (2000).

    Article  CAS  Google Scholar 

  31. A. Rothschile, F. Edelman, Y. Komem, and F. Cosandey, Sens. Actuators, B 67, 282 (2000).

    Article  Google Scholar 

  32. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics (Wiley-Interscience, New York, 1976).

    Google Scholar 

  33. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, and H. Nagamoto, J. Mater. Chem. 3, 1151 (1993).

    Article  CAS  Google Scholar 

  34. Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79, 825 (1996).

    Article  CAS  Google Scholar 

  35. K-N.P. Kumar, J. Engell, J. Kumar, K. Keizer, T. Okubo, and M. Sadakata, J. Mater. Sci. Lett. 14, 1784 (1995).

    Article  Google Scholar 

  36. J.A. Varela, O.J. Whittemore, and E. Longo, Ceram. Int. 16, 177 (1990).

    Article  CAS  Google Scholar 

  37. O.J. Whittemore and J.J. Sipe, Powder Technol. 9, 159 (1974).

    Article  CAS  Google Scholar 

  38. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, Nature 358, 48 (1992).

    Article  CAS  Google Scholar 

  39. K-N.P. Kumar, K. Keizer, and A.J. Burggraaf, J. Mater. Chem. 3, 1141 (1993).

    Article  CAS  Google Scholar 

  40. X-Z. Ding and X-H. Liu, J. Mater. Sci. Lett. 15, 1392 (1996).

    Article  CAS  Google Scholar 

  41. K.J.D. MacKenzie, Trans. J. Br. Ceram. Soc. 74, 29 (1975).

    CAS  Google Scholar 

  42. F.C. Gennari and D.M. Pasquevich, J. Mater. Sci. 33, 1571 (1998).

    Article  CAS  Google Scholar 

  43. Y. Iida and S. Ozaki, J. Am. Ceram. Soc. 44, 120 (1961).

    Article  CAS  Google Scholar 

  44. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okuba, and H. Nagamoto, J. Mater. Chem. 3, 923 (1993).

    Article  CAS  Google Scholar 

  45. H. Zhang and J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000).

    Article  CAS  Google Scholar 

  46. Z. Shunli, Z. Jingfang, Z. Zhijun, and D. Zuliang, Chin. Sci. Bull. 45, 1533 (2000).

    Article  Google Scholar 

  47. R.D. Shannon, J. Appl. Phys. 35, 3414 (1965).

    Article  Google Scholar 

  48. F. Gruy and M. Pijolat, J. Am. Ceram. Soc. 75, 657 (1992).

    Article  CAS  Google Scholar 

  49. J-L. Hebrard, P. Nortier, M. Pijolat, and M. Saustelle, J. Am. Ceram. Soc. 73, 79 (1990).

    Article  CAS  Google Scholar 

  50. H. Imai, H. Morimoto, A. Tominaga, and H. Hirashima, J. Sol-Gel Sci. Technol. 10, 45 (1997).

    Article  CAS  Google Scholar 

  51. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, New York, 1974).

    Google Scholar 

  52. N.P. Bansal, R.H. Doremus, A.J. Bruce, and C.T. Moynihan, J. Am. Ceram. Soc. 66 (1983) 233.

    Article  CAS  Google Scholar 

  53. H. Zhang and J.F. Banfield, J. Mater. Res. 15, 437 (2000).

    Article  CAS  Google Scholar 

  54. K-N.P. Kumar, K. Keizer, and A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993).

    Article  CAS  Google Scholar 

  55. K-N.P. Kumar, J. Tranto, B.N. Nair, J. Kumar, J.W. Høj, and J.E. Engell, Mater. Res. Bull. 29, 551 (1994).

    Article  CAS  Google Scholar 

  56. S. Vaudreuil, M. Bousmina, S. Kaliaguine, and L. Bonneviot, Microporous Mesoporous Mater. 44–45, 249 (2001).

    Article  Google Scholar 

  57. J.A. Moulijn, A.E. van Diepen, and F. Kapteijn, Appl. Catal., A 212, 3 (2001).

    Article  CAS  Google Scholar 

  58. D. Cismaru, N.I. Ionescu, M. Momirlan, and P. Nita, Rev. Roum. Phys. 24, 181 (1979).

    CAS  Google Scholar 

  59. D. Cismaru and M. Momirlan, Rev. Roum. Phys. 23, 607 (1978).

    CAS  Google Scholar 

  60. J.A. Varela and O.J. Whittemore, Proceedings of the 5th International Round Table Conference on Sintering (Elsevier, Amsterdam, The Netherlands, 1982), pp. 439–445.

    Google Scholar 

  61. R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965).

    Article  CAS  Google Scholar 

  62. P.I. Gouma, P.K. Dutta, and M.J. Mills, Nanostruct. Mater. 11, 1231 (1999).

    Article  CAS  Google Scholar 

  63. P.I. Gouma and M.J. Mills, J. Am. Ceram. Soc. 84, 619 (2001).

    Article  CAS  Google Scholar 

  64. H. Zhang and J.F. Banfield, J. Mater. Chem. 8, 2073 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Dickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, O.K., Gong, D., Paulose, M. et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research 18, 156–165 (2003). https://doi.org/10.1557/JMR.2003.0022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0022

Navigation