Skip to main content
Log in

Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Potassium tantalate powders were hydrothermally synthesized at 100 to 200 °C in 4 to 15 M aqueous KOH solutions. A defect pyrochlore, Kta2O5(OH). nH2O (n ≈ 1.4), was obtained at 4 M KOH, but at 7–12 M KOH, this pyrochlore was gradually replaced by a defect perovskite as the stable phase. At 15 M KOH, there was no intermediate pyrochlore, only a defect perovskite, 0.85Ta0.92O2.43(OH)0.57 0.15H2O. Synthesis at higher KOH concentrations led to greater incorporation of protons in the perovskite structures. The potassium vacancies required for charge compensation of incorporated protons could accommodate water molecules in the perovskite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.G. Vendik, E.K. Hollmann, A.B. Kozyrev, and A.M. Prudan, J. Superconductivity 12, 325 (1999).

    Article  CAS  Google Scholar 

  2. H.M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, P.J. Marrero, and D.P. Norton, Appl. Phys. Lett. 68, 1488 (1996).

    Article  CAS  Google Scholar 

  3. G.K.L. Goh, C.G. Levi, and F.F. Lange, J. Mater. Res. (in press).

  4. A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin, and C.G. Levi, J. Mater. Res. 10, 1784 (1995).

    Article  CAS  Google Scholar 

  5. A.T. Chien, J.S. Speck, and F.F. Lange, J. Mater. Res. 12, 1176 (1997).

    Article  CAS  Google Scholar 

  6. A. Reisman, F. Holtzberg, M. Berkenblit, and M. Berry, J. Am. Chem. Soc. 78, 4514 (1956).

    Article  CAS  Google Scholar 

  7. S. Hirano, T. Yogo, K. Kikuta, T. Morishita, and Y. Ito, J. Am. Ceram. Soc. 75, 1701 (1992).

    Article  CAS  Google Scholar 

  8. N. Duan, Z-R. Tian, W.S. Willis, S.L. Suib, J.M. Newsam, and S.M. Levine, Inorg. Chem. 37, 4697 (1998).

    Article  CAS  Google Scholar 

  9. Powder Diffraction Files, Card No. 35–1464 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1992).

  10. Powder Diffraction Files, Card No. 38–1470 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1992).

  11. E. Brunner, H.G. Karge, and H. Pfeifer, Z. Phys. Chem. 176, 173 (1992).

    Article  CAS  Google Scholar 

  12. S.Q. Fu, W-K. Lee, A.S. Nowick, L.A. Boatner, and M.M. Abraham, J. Solid State Chem. 83, 221 (1989).

    Article  CAS  Google Scholar 

  13. A.T. Chien, X. Xu, J.H. Kim, J.S. Speck, and F.F. Lange, J. Mater. Res. 14, 3330 (1999).

    Article  CAS  Google Scholar 

  14. D. Hennings and S. Schreinemacher, J. Eur. Ceram. Soc. 9, 41 (1992).

    Article  CAS  Google Scholar 

  15. S. Wada, T. Suzuki, and T. Noma, J. Ceram. Soc. Jpn. 104, 383 (1996).

    Article  CAS  Google Scholar 

  16. E-W. Shi, C-T Xia, W-Z. Zhong, B-G. Wang, and C-D. Feng, J. Am. Ceram. Soc. 80, 1567 (1997).

    Article  CAS  Google Scholar 

  17. M.T. Weller and P.G. Dickens, J. Solid State Chem. 58, 164 (1985).

    Article  CAS  Google Scholar 

  18. S. Wada, T. Suzuki, and T. Noma, Jpn. J. Appl. Phys. 34, 5368 (1995).

    Article  CAS  Google Scholar 

  19. R. Waser, Z. Naturforsch. 42a, 1357 (1987).

    Article  Google Scholar 

  20. K.D. Kreuer, St. Adams, W. Münch, A. Fuchs, U. Klock, and J. Maier, Solid State Ionics 145, 295 (2001).

    Article  CAS  Google Scholar 

  21. A-J. Li and R. Nussinov, Prot. 32, 111 (1998).

    CAS  Google Scholar 

  22. R.D. Shannon and C.T. Prewitt, Acta Crystall. B 25, 925 (1969).

    Article  CAS  Google Scholar 

  23. A.W. Sleight, Inorg. Chem. 7, 1704 (1968).

    Article  CAS  Google Scholar 

  24. M.A. Subramanian, G. Aravanudan, and G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  25. J. Pannetier, J. Phys. Chem. Solids 34, 583 (1973).

    Article  CAS  Google Scholar 

  26. J.B. Goodenough, H.Y-P. Hong, and J.A. Kafalas, Mater. Res. Bull. 11, 203 (1976).

    Article  CAS  Google Scholar 

  27. N. Kumada, N. Ozawa, N. Kinomura, and F. Muto, Mater. Res. Bull. 20, 583 (1985).

    Article  CAS  Google Scholar 

  28. P.G. Dickens and M.T. Weller, Solid State Comm. 59, 569 (1986).

    Article  CAS  Google Scholar 

  29. M.A. Butler and R.M. Biefeld, Phy. Rev. B 19, 5455 (1979).

    Article  CAS  Google Scholar 

  30. K. Seff, in Recent Advances and New Horizons in Zeolite Science and Technology, Stud. Surf. Sci. Catal. 102, edited by H. Chon, S.I. Woo, and S-E. Park (1996), p. 267.

    Google Scholar 

  31. N.J. Tapp, N.B. Milestone, M.E. Bowden, and R.H. Meinhold, Zeolites 10, 105 (1990).

    Article  CAS  Google Scholar 

  32. T.M. Nenoff, J.B. Parise, G.A. Jones, L.G. Galya, D.R. Corbin, and G.D. Stucky, J. Phys. Chem. 100, 14256 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory K. L. Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, G.K.L., Haile, S.M., Levi, C.G. et al. Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate. Journal of Materials Research 17, 3168–3176 (2002). https://doi.org/10.1557/JMR.2002.0458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0458

Navigation