Skip to main content
Log in

Thermodynamics and phase stability in the In–N system

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Results of a chemical vapor deposition crystal growth method intended to produce large amounts of InN needed for thermodynamic experiments are reported. Polycrystalline films of InN were grown by reaction of InCl3 and NH3 in a hot-wall silica reactor under nearly atmospheric pressure. Samples were analyzed using x-ray diffraction and chemical analysis. The decomposition of InN was studied in both thin film and powder form. InN films were investigated by isothermal heating under nitrogen and subsequent microscopic inspection. The removal of the nucleation barrier of forming the first liquid phase was emphasized. InN powder decomposition experiments involved two different customized thermogravimetric methods: (i) dynamic oscillation thermogravimetric analysis (TGA), and (ii) isothermal stepping TGA for a higher resolution of the decomposition start. The decomposition start was found consistently at (773 ±5) K under 1 bar of nitrogen. Nevertheless, it is suggested that InN may be metastable even below room temperature based on Computer Coupling of Phase Diagrams and Thermo chemistry-type thermodynamic analysis of all available phase equilibrium and thermodynamic data. This included the determination of the absolute entropy of InN, 31.6 ±3 J/mol-formula K, based on a Debye and Einstein analysis of the experimental data on the heat capacity. All calculations of pressure are corrected for the fugacity of nitrogen, which becomes crucial above 1000 bar. The contradictory literature data in the In–N system are discussed based on three different internally consistent thermodynamic analyses of the system that highlight the consequences of different choices made on the decomposition temperature of InN. Widely reproduced data in the literature are shown to produce thermodynamically impossible negative absolute entropy of InN. Complete P-T-x phase diagrams are given, which strongly suggest that solid InN is metastable under ambient conditions. To find out that InN crystals could be reproducibly superheated more than 500 K before they actually decompose comes as a surprise compared to other III-V systems, especially Ga–N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  2. Properties of Group III Nitrides, EMIS Data Review Series No. 11, edited by J.H. Edgar (Inspec, London, U.K., 1994).

    Google Scholar 

  3. O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998).

    Article  CAS  Google Scholar 

  4. Properties and Applications of Gallium Nitride and Related Semiconductors, EMIS Datareview Series No. 16, edited by J.H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel (Inspec, London, U.K., 1999).

    Google Scholar 

  5. Y-S. Park, J. Kor. Phys. Soc. 34, S199 (1999).

    CAS  Google Scholar 

  6. S.C. Jain, M. Wilander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000).

    Article  CAS  Google Scholar 

  7. I.N. Przhevalskii, S.Yu. Karpov, and Yu.N. Makarov, MRS Internet J. Nitride Semicond. Res. 30, 1 (1998), http://nsr.mij.mrs.org.

    Google Scholar 

  8. J.B. MacChesney, P.M. Bridenbaugh, and P.B. O’Connor, Mater. Res. Bull. 5, 783 (1970).

    Article  CAS  Google Scholar 

  9. I. Grzegory, S. Krukowski, J. Jun, M. Bockowski, M. Wroblewski, and S. Porowski, in High-Pressure Science and Technology, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, AIP Conf. Proc. 309 (Am. Inst. Physics, New York, 1994), pp. 565–568.

    Book  Google Scholar 

  10. I. Grzegory, Ph.D. Thesis, High-Pres. Res. Cent., Polish Academy of Sciences, Warszawa, Poland (1995; in Polish).

  11. J.W. Trainor and K. Rose, J. Electron. Mater. 35, 821 (1974).

    Article  Google Scholar 

  12. T.L. Tansley and C.P. Foley, J. Appl. Phys. 59, 3241 (1986).

    Article  CAS  Google Scholar 

  13. O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, J. Vac. Sci. Technol. B 14, 3532 (1996).

    Article  CAS  Google Scholar 

  14. Q. Guo, O. Kato, and A. Yoshida, J. Appl. Phys. 73, 7969 (1993).

    Article  CAS  Google Scholar 

  15. I. Grzegory, in High-Pressure Science and Technology, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, AIP Conf. Proc. 309 (Am. Inst. Physics, New York, 1994), pp. 561–564.

    Book  Google Scholar 

  16. S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Grzegory, B. Lucznik, G. Nowak, M. Wroblewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, and P. Zinn, J. Phys. Chem. Solids 59, 289 (1998).

    Article  CAS  Google Scholar 

  17. N. Takahashi, R. Matsumoto, A. Koukitu, and H. Seki, Jpn. J. Appl. Phys. 36, L743 (1997).

    Article  CAS  Google Scholar 

  18. N. Takahashi, J. Ogasawara, and A. Koukitu, J. Cryst. Growth 172, 298 (1997).

    Article  CAS  Google Scholar 

  19. A. Pisch and R. Schmid-Fetzer, J. Cryst. Growth 187, 329 (1998).

    Article  CAS  Google Scholar 

  20. J. Unland, B. Onderka, A. Davydov, and R. Schmid-Fetzer (submitted).

  21. R. Juza and H. Hahn, Z. Anorg. Allgem. Chem. 239, 282 (1938, in German).

    Article  CAS  Google Scholar 

  22. S. Strite, D. Chandrasekhar, D.J. Smith, J. Sariel, H. Chen, N. Teraguchi, and H. Morkoc, J. Cryst. Growth 127, 204 (1993).

    Article  CAS  Google Scholar 

  23. Q. Xia, H. Xia, and A.L. Ruoff, in High-Pressure Science and Technology, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, AIP Conf. Proc. 309, (Am. Inst. Physics, New York, 1994), pp. 307–310.

    Google Scholar 

  24. T.L. Tansley, in Properties of Group III Nitrides, edited by J.H. Edgar, EMIS Datareview Series No. 11 (Inspec, London, U.K., 1994), pp. 35–40.

    Google Scholar 

  25. S. Krukowski, M. Leszczynski, and S. Porowski, in Properties, Processing and Applications of Gallium Nitride and Related Semiconductors, edited by J.H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel, EMIS Datareview Series No. 16 (Inspec, London, U.K., 1999), pp. 21–28.

    Google Scholar 

  26. M.W. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, L. Höglund, and H. Yokokawa, CALPHAD 19, 437 (1995).

    Article  CAS  Google Scholar 

  27. A.A. Marmaluk, R.Kh. Akchurin, and V.A. Gorbylev, High Temperature 36, 817 (1998).

    Google Scholar 

  28. O. Kubaschewski, C.B. Alcock, and P.J. Spencer, Metallurgical Thermochemistry, 6th ed. (Pergamon Press, London, U.K., 1993).

    Google Scholar 

  29. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  30. K. Frisk, CALPHAD 15, 79 (1991).

    Article  CAS  Google Scholar 

  31. SGTE Substance Database, Royal Institute of Technology, Stockholm, Sweden (1994).

  32. A.A. Antonovich, M.A. Plotnikov, and G.Ya. Savel’ev, Zh. Prikl. Mekh. Tekh. Fiz. 10(3), 99 (1969, in Russian).

    Google Scholar 

  33. R.T. Jacobsen, R.B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15, 735 (1986).

    Article  CAS  Google Scholar 

  34. E.W. Lemmon, R.T. Jacobsen, S.G. Penoncello, and S.W. Beyerlein, Computer programs for calculating thermodynamic properties of fluids of engineering interest, version 6/4/1996, Univ. of Idaho Center for Applied Thermodynamic Studios (CATS), Moscow, ID (1996).

    Google Scholar 

  35. PANDAT, Software for Multicomponent Phase Diagram Calculation, Computherm LLC, Madison, WI (2001).

  36. S-L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, and R. Schmid-Fetzer, J. Phase Equilibria 22, 373 (2001).

    Article  CAS  Google Scholar 

  37. R.D. Jones and K. Rose, CALPHAD 8, 343 (1984).

    Article  CAS  Google Scholar 

  38. S. Porowski and I. Grzegory, in Properties of Group III Nitrides, edited by J.H. Edgar, EMIS Datareview Series No. 11 (Inspec, London, U.K., 1994), pp. 82–85.

    Google Scholar 

  39. J.A. Van Vechten, Phys. Rev. B 7, 1479 (1973).

    Article  Google Scholar 

  40. M.R. Ranade, F. Tessier, A. Navrotsky, and R. Marchand, J. Mater. Res. 16, 2824 (2001).

    Article  CAS  Google Scholar 

  41. H. Hahn and R. Juza, Z. Anorg. Allgem. Chem. 244, 111 (1940, in German).

    Article  CAS  Google Scholar 

  42. A.M. Vorob’ev, G.V. Evseeva, and L.V. Zenkevich, Russ. J. Phys. Chem. 45, 1501 (1971).

    Google Scholar 

  43. A.M. Vorob’ev, G.V. Evseeva, and L.V. Zenkevich, Russ. J. Phys. Chem. 47, 1616 (1973).

    Google Scholar 

  44. S.P. Gordienko and B.V. Fenochka, Russ. J. Phys. Chem. 51, 315 (1977).

    Google Scholar 

  45. R.D. Jones and K. Rose, J. Phys. Chem. Solids 48, 587 (1987).

    Article  CAS  Google Scholar 

  46. J. Hong, J.W. Lee, C.B. Vartuli, J.D. Mackenzie, S.M. Donovan, C.R. Abernathy, R.V. Crockett, S.J. Pearton, J.C. Zolper, and F. Ren, Solid-State Electron. 41, 681 (1997).

    Article  CAS  Google Scholar 

  47. W. Class, Contract Rep. 1968, NASA CR-1171 (1968).

  48. A.V. Kostanovsky and A.V. Kirillin, Int. J. Thermophys. 17, 507 (1996).

    Article  CAS  Google Scholar 

  49. A.D. Mah, E.G. King, W.W. Weller, and A.U. Christensen, RI 5716, U.S. Bureau of Mines, Berkeley, CA (1961).

    Google Scholar 

  50. V.I. Koshchenko, Ya.Kh. Grinberg, and A.F. Demidenko, Neorg. Mater. 20, 1787 (1984, in Russian).

    CAS  Google Scholar 

  51. S.S. Strel’chenko and V.V. Lebedev, III-V Compounds Handbook (Metallurgia Moscow, USSR, 1984).

    Google Scholar 

  52. S. Sato, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 29, 19 (1932).

    Google Scholar 

  53. C.A. Neugebauer and J.L. Margrave, Z. Anorg. Allgem. Chem. 290, 82 (1957).

    Article  CAS  Google Scholar 

  54. D.L. Hildebrand and W.F. Hall, J. Phys. Chem. 67, 888 (1963).

    Article  Google Scholar 

  55. K. Era, Muki Zaishitsu Kenky-usho kenky-u h-okokusho 4, 59 (1973, in Japanese); Chem. Abstr. 87, 192133m (1977).

    CAS  Google Scholar 

  56. J.M. McHale, A. Navrotsky, and F.J. DiSalvo, Chem. Mater. 11, 1148 (1999).

    Article  CAS  Google Scholar 

  57. J. Karpinski, J. Jun, and S. Porowski, J. Cryst. Growth 66, 1 (1984).

    Article  CAS  Google Scholar 

  58. L.I. Marina and A.Ya. Nashel’skii, Usp. Khim. 40, 1309 (1971, in Russian).

    Article  CAS  Google Scholar 

  59. A.F. Demidenko, V.I. Koshchenko, L.D. Sabanova, and Yu.M. Gran, Russ. J. Phys. Chem. 49, 940 (1975).

    Google Scholar 

  60. R. Madar, G. Jacob, J. Hallais, and R. Fruchart, J. Cryst. Growth 31, 197 (1975).

    Article  CAS  Google Scholar 

  61. J. Karpinski and S. Porowski, J. Cryst. Growth 66, 11 (1984).

    Article  CAS  Google Scholar 

  62. M.R. Ranade, F. Tessier, A. Navrotsky, V.J. Leppert, S.H. Risbud, F.J. DiSalvo, and C.M. Balkas, J. Phys. Chem. B 104, 4060 (2000).

    Article  CAS  Google Scholar 

  63. V.I. Koshenko, A.F. Demidenko, L.D. Sabanova, V.E. Yachmenev, V.E. Gran, and A.E. Radchenko, Inorg. Mater. 15, 1329 [1979, translated from Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 1686 (1979)].

    Google Scholar 

  64. A. Davydov and T.J. Anderson, in III-V Nitride Materials and Processes III, edited by T.D. Moustakas, S.E. Mohney, and S.J. Pearton (Electrochem. Soc., Pennington, NJ, 1999), Vol. 98–18, pp. 38–49.

    Google Scholar 

  65. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Pergamon Press, London, U.K., 1979).

    Google Scholar 

  66. D.T. Landolt-Boernstein, Numerical Data and Functional Relationship in Science and Technology, edited by O. Madelung (Springer-Verlag, New York, 1982), p. 17a.

    Google Scholar 

  67. L. Kaufman, J. Nell, K. Taylor, and F. Hayes, CALPHAD 5, 185 (1981).

    Article  CAS  Google Scholar 

  68. I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Othani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, and T. Anderson, CALPHAD 18, 177 (1994).

    Article  CAS  Google Scholar 

  69. D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, and R.H. Schumm, Nat. Bur. Stand. Tech. Note No. 270–3, Gaithersburg, MD (1968).

    Google Scholar 

  70. K. Yamaguchi, K. Itagaki, and Y.A. Chang, CALPHAD 20, 439 (1996).

    Article  CAS  Google Scholar 

  71. M. Ilegems, M.B. Panish, and J.R. Arthur, J. Chem. Thermodynam. 6, 157 (1974).

    Article  CAS  Google Scholar 

  72. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys(ASM, Metals Park, OH, 1973).

    Google Scholar 

  73. L.I. Marina and A.Ya. Nashel’skii, Russ. J. Phys. Chem. 43, 963 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schmid-Fetzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onderka, B., Unland, J. & Schmid-Fetzer, R. Thermodynamics and phase stability in the In–N system. Journal of Materials Research 17, 3065–3083 (2002). https://doi.org/10.1557/JMR.2002.0445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0445

Navigation