Skip to main content
Log in

Phase transformations in rapid thermal processed lead zirconate titanate

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The crystallization kinetics of the pyrochlore to perovskite phase transformation in lead zirconate titanate (PZT) thin films have been analyzed using rapid thermal processing (RTP). Sol-gel PZT thin films, fabricated on platinum electrodes, were annealed at 550 °C to 650 °C with hold times ranging from 1 s to 5 min. Glancing angle x-ray diffraction (XRD) was used for depth profiling to identify the location of phases in the films. Transmission electron microscopy (TEM) provided information on grain structure, nucleation, and growth. The phase information was correlated to the ferroelectric and dielectric properties. The perovskite phase nucleated in the pyrochlore phase throughout the film thickness, and at 650 °C the transformation was complete in 15 s. Fast growing (100) PZT nucleated at the platinum and consumed a small-grained matrix until a columnar structure was obtained. A ramp rate of 100 °C/s was sufficiently fast to prevent transformation during heating and allowed the direct application of an Avrami model for transformation kinetics. An activation energy of 610 kJ/mol was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferroelectric Thin Films III, edited by B. A. Tuttle, E. R. Myers, S. B. Desu, and P. K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993).

  2. H. N. Al-Shareef, A. I. Kingon, X. Chen, K. R. Bellur, and O. Auciello, J. Mater. Res. 9, 2968 (1994).

    Article  CAS  Google Scholar 

  3. M. Klee, R. Eusemann, R. Waser, W. Brand, and H. van Hal, J. Appl. Phys. 72 (4), 1566 (1992).

    Article  CAS  Google Scholar 

  4. I. M. Reany, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, J. Am. Ceram. Soc. 77 (5), 1209 (1994).

    Article  Google Scholar 

  5. R. Ramesh, T. Sands, and V. G. Keramidas, Appl. Phys. Lett. 63 (6), 731 (1993).

    Article  CAS  Google Scholar 

  6. B. Tuttle, J. A. Voigt, D. C. Goodnow, D. L. Lamppa, T. J. Headley, M. O. Eatough, G. Zender, R. D. Nasby, and S. M. Rodgers, J. Am. Ceram. Soc. 76 (6), 1537 (1993).

    Article  CAS  Google Scholar 

  7. A. Kingon et al., in Proceedings of NATO Advanced Studies Workshop on Ferroelectric Thin Films, Italy, June 1994.

  8. J. S. Lee, C. J. Ki, D. S. Yoon, C. G. Ckoi, J. M. Kim, and K. No, Jpn. J. Appl. Phys. 33, 260 (1994).

    Article  CAS  Google Scholar 

  9. C. K. Kwok and S. B. Desu, J. Mater. Res. 8, 339 (1993).

    Article  Google Scholar 

  10. T. Tani and D. A. Payne, J. Am. Ceram. Soc. 77 (5), 1242 (1994).

    Article  CAS  Google Scholar 

  11. E. M. Griswold, M. Sayer, and L. Weaver, in Proceedings of the 6th International Symposium on Integrated Ferroelectrics (ISIF 94), Monterey, CA, 1994, J. Integrated Ferroelectrics 8, 109 (1995).

    Article  CAS  Google Scholar 

  12. H. Hu, C. J. Peng, and S. B. Krupanidhi, Thin Solid Films 223, 327 (1993).

    Article  CAS  Google Scholar 

  13. C. V. R. Vasant Kumar, R. Pascual, and M. Sayer, J. Appl. Phys. 71 (2), 864 (1992).

    Article  Google Scholar 

  14. M. Sayer, in Proceedings of 3rd International Symposium on Integrated Ferroelectrics (ISIF 91), Colorado Springs, CO (April 1991), p. 1.

    Google Scholar 

  15. M. Sayer and M. Sedlar, in Proceedings of 6th International Symposium on Integrated Ferroelectrics (ISIF 94), Monterey, CA, March 1994, J. Integrated Ferroelectrics 6, 129 (1995).

    Article  Google Scholar 

  16. L. Weaver, J. Res. Micros. Techniques (1995, in press).

  17. S. Chen and I. Chen, J. Am. Ceram. Soc. 77 (9) 2332 (1994).

    Article  CAS  Google Scholar 

  18. C. K. Kim, D. S. Yoon, J. S. Lee, C. G. Choi, and K. No, Jpn. J. Appl. Phys. 33, 2675 (1994).

    Article  CAS  Google Scholar 

  19. E. K. F. Dang and R. J. Gooding, Phys. Rev. Lett. 74, 3848 (1995).

    Article  CAS  Google Scholar 

  20. K. Sreenivas, I. Reany, T. Maeder, N. Setter, C. Jagadish, and R. G. Elliman, J. Appl. Phys. 75 (1), 232 (1994).

    Article  CAS  Google Scholar 

  21. E. M. Griswold, M. Sayer, D. T. Amm, and I. D. Calder, Can. J. Phys. 69, 260 (1991).

    Article  CAS  Google Scholar 

  22. M. Avrami, Chem. Phys. 7 (12), 1103 (1939).

    CAS  Google Scholar 

  23. S. Ranganathan and M. von Heimendahl, J. Mater. Sci. 16, 2401 (1981).

    Article  CAS  Google Scholar 

  24. C. K. Kwok and S. B. Desu, Ferroelectric Films, edited by A. S. Balla and K. M. Nair (Ceram. Trans. 25, American Ceramics Society, Westerville, OH, 1992), p. 85.

    Google Scholar 

  25. J. A. Voigt, B. A. Turtle, T. J. Headly, M. O. Eatough, D. L. Lamppa, and D. Goodnow, in Ferroelectric Thin Films III, edited by B. A. Turtle, E. R. Myers, S. B. Desu, and P. K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 15.

  26. E. M. Griswold, L. Weaver, I. D. Calder, and M. Sayer, in Ferroelectric Thin Films IV, edited by S. B. Desu, B. A. Turtle, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361-C5, Pittsburgh, PA, 1995), p. 389.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griswold, E.M., Weaver, L., Sayer, M. et al. Phase transformations in rapid thermal processed lead zirconate titanate. Journal of Materials Research 10, 3149–3159 (1995). https://doi.org/10.1557/JMR.1995.3149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.3149

Navigation