Skip to main content
Log in

On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Young’s moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying have been measured by the nanoindentation technique. The results indicate that Young’s moduli of nanocrystalline Cu, Ni, and Cu–Ni alloys with a grain size ranging from 17 to 26 nm are similar to those of the corresponding polycrystals. The dependence of Young’s modulus of nanocrystalline Fe on grain size corresponds well to a theoretical prediction, which suggests that the change in the Young and shear moduli of nanocrystalline materials, free of porosity, with a grain size larger than about 4 nm, should be very limited (<10%). It is likely that reported large decreases in the Young and shear moduli of nanocrystalline materials prepared by gas-condensation/vacuum consolidation result from a relatively large volume fraction of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. H. Gleiter, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by M. Nastasi, D. M. Parkin, and H. Gleiter (Kluwer Academic Publishers, Dordrecht/Boston/London, 1993), NATO ASI Series, Series E: Applied Sciences, Vol. 233, p. 1.

    Google Scholar 

  3. A. L. Greer, ibid, p. 53.

  4. K. T. Aust, U. Erb, and G. Palumbo, ibid, p. 107.

  5. J. D. Embury and D. J. Lahaie, ibid, p. 287.

  6. R. W. Siegel, ibid, p. 509.

  7. V. G. Gryaznov and L. I. Trusov, Prog. Mater. Sci. 37, 289 (1993).

    Article  CAS  Google Scholar 

  8. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson, and R. W. Armstrong, Scripta Metall. 20, 93 (1986).

    Article  CAS  Google Scholar 

  9. J. S. C. Jang and C. C. Koch, Scripta Metall Mater. 24, 1599 (1990).

    Article  CAS  Google Scholar 

  10. G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. Mater. 24, 145 (1990).

    Article  CAS  Google Scholar 

  11. G. W. Nieman, J. R. Weertman, and R. W. Siegel, J. Mater. Res. 6, 1012 (1991).

    Article  CAS  Google Scholar 

  12. G. W. Nieman, J. R. Weertman, and R. W. Siegel, in Clusters and Cluster-Assembled Materials, edited by R. R. Averback, J. Bernholc, and D. L. Nelson (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 493.

  13. K. Y. Wang, T. D. Shen, M. X. Quan, and W. D. Wei, J. Mater. Sci. Lett. 12, 1818 (1993).

    Article  CAS  Google Scholar 

  14. J. S. C. Jang and C. C. Koch, Scripta Metall. 22, 677 (1988).

    Article  CAS  Google Scholar 

  15. G. McMahon and U. Erb, Microstruc. Sci. 17, 447 (1989).

    Google Scholar 

  16. Y. S. Cho and C. C. Koch, Mater. Sci. Eng. A 141, 139 (1991).

    Article  Google Scholar 

  17. H. Chang, C. J. Alstetter, and R. S. Averback, J. Mater. Res. 7, 2692 (1992).

    Google Scholar 

  18. D. K. Kim and K. Okazaki, Mater. Sci. Forum 88–90, 553 (1992).

    Article  Google Scholar 

  19. H. Y. Tong, J. T. Wang, B. Z. Ding, H. G. Jiang, and K. Lu, J. Non-Cryst. Solids 150, 444 (1992).

    Article  CAS  Google Scholar 

  20. X. D. Liu, Z. Q. Hu, and B. Z. Ding, NanoStru. Mater. 2, 545 (1993).

    Article  CAS  Google Scholar 

  21. T. Tsakalakos and J. E. Hilliard, J. Appl. Phys. 54, 734 (1983).

    Article  CAS  Google Scholar 

  22. D. Baral, J. B. Ketterson, and J. E. Hilliard, J. Appl. Phys. 57, 1076 (1985).

    Article  CAS  Google Scholar 

  23. W. M. C. Yang, T. Tsakalakos, and J. E. Hilliard, J. Appl. Phys. 48, 876 (1977).

    Article  CAS  Google Scholar 

  24. G. Henein and J. E. Hilliard, J. Appl. Phys. 54, 728 (1983).

    Article  CAS  Google Scholar 

  25. A. Fartash, E. E. Fullerton, I. K. Schuller, S. E. Bobbin, J. W. Wagner, R. C. Cammarata, S. Kumar, and M. Grimsditch, Phys. Rev. B 44, 13 760 (1991–11).

    Article  Google Scholar 

  26. R. C. Cammarata, T. E. Schlesinger, C. Kim, S. B. Qadri, and A. E. Edelstein, Appl. Phys. Lett. 56, 1862 (1990).

    Article  CAS  Google Scholar 

  27. A. Moreau, J. B. Ketterson, and J. Mattson, Appl. Phys. Lett. 56, 1959 (1990).

    Article  CAS  Google Scholar 

  28. J. W. Mintmire, Mater. Sci. Eng. A 126, 29 (1990).

    Article  Google Scholar 

  29. B. M. Davis, D. N. Seidman, A. Moreau, J. B. Ketterson, J. Mattson, and M. Grimsditch, Phys. Rev. B 43, 9304 (1991–11).

    Article  CAS  Google Scholar 

  30. Y. Sasajima, S. Taya, and R. Yamamoto, J. Magn. Magn. Mater. 126, 218 (1993).

    Article  CAS  Google Scholar 

  31. M. Weiler, J. Diehl, and H-E. Schaffer, Philos. Mag. 63, 527 (1991).

    Article  CAS  Google Scholar 

  32. D. Korn, A. Morsch, R. Birringer, W. Arnold, and H. Gleiter, J. Phys. (Paris) 49, c5-375 (1988).

    Article  Google Scholar 

  33. M. J. Mayo, R. W. Siegel, A. Narayanasamy, and W. D. Nix, J. Mater. Res. 5, 1073 (1990).

    Article  CAS  Google Scholar 

  34. V. Krstic, U. Erb, and G. Palumbo, Scripta Metall. Mater. 29, 1501 (1993).

    Article  CAS  Google Scholar 

  35. N. Karpe, G. Lapogian, J. Bøttiger, and J. P. Krog, Philos. Mag. B 71, 445 (1995).

    Article  CAS  Google Scholar 

  36. C. C. Koch, NanoStru. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  37. T. D. Shen and C. C. Koch, Mater. Sci. Forum 179–181, 17 (1995).

    Article  Google Scholar 

  38. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  39. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).

    Article  CAS  Google Scholar 

  40. A. Wolfenden, Dynamic Elastic Modulus Measurements in Materials (ASTM, Philadelphia, PA, 1990), p. 135.

  41. Metals Handbook, 10th ed., Vol. 2, Properties and SelectionNonferrous Alloys and Special-Purpose Materials (ASM INTERNATIONAL, Materials Park, OH, 1990), pp. 265, 338, 437.

  42. A. K. Giri, Mater. Lett. 17, 353 (1993).

    Article  CAS  Google Scholar 

  43. R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys (ASM INTERNATIONAL, Materials Park, OH, 1994), p. 94.

    Google Scholar 

  44. G. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Metall. Mater. 24, 1347 (1990).

    Article  CAS  Google Scholar 

  45. L. Wong, D. Ostrandeer, U. Erb, G. Palumbo, and K. T. Aust, in Nanophases and Nanocrystalline Structures, edited by R. D. Shull and J. M. Sanchez (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 85.

    Google Scholar 

  46. T. Masumoto and R. Maddin, Mater. Sci. Eng. 19, 1 (1975).

    Article  CAS  Google Scholar 

  47. M. D. Kluge, D. Wolf, J. F. Lutsko, and S. R. Phillpot, J. Appl. Phys. 67, 2370 (1990).

    Article  CAS  Google Scholar 

  48. B. Paul, Trans. AIME 218, 36 (1960).

    CAS  Google Scholar 

  49. Da Chen, Mater. Sci. Eng. A 190, 193 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T.D., Koch, C.C., Tsui, T.Y. et al. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. Journal of Materials Research 10, 2892–2896 (1995). https://doi.org/10.1557/JMR.1995.2892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2892

Navigation