Skip to main content
Log in

Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Room-temperature current-voltage dependence of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films has been investigated. Both strong varistor type behavior and space charge limited conduction (SCLC) were observed. Differences in the current-voltage characteristics are attributed to differences in the nature of the grain boundaries resulting from variations in processing conditions. The strong varistor type behavior is believed to be due to the presence of highly resistive grain boundaries and thus may be termed grain boundary limited conduction (GBLC). A double-depletion-layer barrier model is used to describe the origin of high resistivity of the grain boundaries. It is suggested that the barrier height varies significantly with the applied field due to the nonlinear ferroelectric polarization, and that the barrier is overcome by tunneling at sufficiently high fields. In some other cases, the resistivity of the grain boundaries is comparable to that of the grains, and therefore the intrinsically heterogeneous films degenerate into quasi-homogeneous media, to which the SCLC theory is applicable. As such, a unified grain boundary modeling reconciles different types of conduction mechanisms in the ultrafine-grained ferroelectric thin films. This grain boundary modeling also well accounts for some other dc-related phenomena observed, including abnormal current-voltage dependencies, remanent polarization effect, electrode interface effect, and unusual charging and discharging transients. In addition, many other electrical properties of the ferroelectric films may be better understood by taking the effect of grain boundaries into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Paz de Araujo, L.D. McMillan, B.M. Melnick, J.D. Cuchiaro, and J. F. Scott, Ferroelectrics 104, 241 (1990).

    Article  Google Scholar 

  2. L. H. Parker and A. F. Tasch, IEEE Cir. Dev. Mag. (1), 17 (1990).

    Article  Google Scholar 

  3. B.M. Melnick, C.A. Paz de Araujo, L.D. McMillan, D.A. Carver, and J.F. Scott, Ferroelectrics 116, 79 (1991).

    Article  Google Scholar 

  4. H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillan, J. Appl. Phys. 68, 5783 (1990).

    Article  CAS  Google Scholar 

  5. D. J. Johnson, D. T. Amm, E. Griswold, K. Sreenivas, G. Yi, and M. Sayer, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 289.

  6. D.M. Smyth, Ferroelectrics 116, 117 (1991).

    Article  CAS  Google Scholar 

  7. J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, L. D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, 382 (1991).

    Article  CAS  Google Scholar 

  8. B.M. Melnick, J.F. Scott, C.A. Paz de Araujo, and L.D. McMillan, Ferroelectrics 135, 163 (1992).

    Article  CAS  Google Scholar 

  9. R. Waser and M. Klee, Integrated Ferroelectrics 2, 257 (1992).

    Article  Google Scholar 

  10. G.R. Fox and S.B. Krupanidhi, J. Appl. Phys. 74, 1949 (1993).

    Article  CAS  Google Scholar 

  11. L. M. Levinson and H. R. Philipp, J. Appl. Phys. 46, 1332 (1975).

    Article  CAS  Google Scholar 

  12. S. B. Krupanidhi, H. Hu, and V. Kumar, J. Appl. Phys. 71, 376 (1992).

    Article  CAS  Google Scholar 

  13. H. Hu and S.B. Krupanidhi, J. Appl. Phys. 74, 3373 (1993).

    Article  CAS  Google Scholar 

  14. S. B. Krupanidhi, H. Hu, and G. R. Fox, in Integrated Ferroelectrics, edited by J. F. Scott (in press).

  15. P. K. Larsen, G. L. M. Kampschoer, M. J. E. Ulenaers, G. A. C. M. Spierings, and R. Cuppens, Appl. Phys. Lett. 59, 611 (1991).

    Article  CAS  Google Scholar 

  16. H. Hu and S.B. Krupanidhi, Appl. Phys. Lett. 62, 651 (1993).

    Article  CAS  Google Scholar 

  17. S.E. Bemacki, in Ferroelectric Thin Films II, edited by A.I. Kingon, E. R. Meyers, and B. Turtle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 135.

  18. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970), Chap. 6.

    Google Scholar 

  19. A. K. Jonscher, Dielectric Relaxation in Solid (Chelsea Dielectrics, London, 1983), Chaps. 5–7.

    Google Scholar 

  20. H. Neumann and G. Arlt, Ferroelectrics 69, 179 (1986).

    Article  CAS  Google Scholar 

  21. X. Chen, A. I. Kingon, L. Mantese, O. Auciello, and K. Y. Hsieh, in Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 1992, p. 264.

  22. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981), Chap. 5.

    Google Scholar 

  23. R. H. Tredgold, Space Charge Conduction in Solid (Elsevier, Amsterdam, 1966), Chap. 4.

    Book  Google Scholar 

  24. R. C. Weast and M. J. Astle, CRC Handbook of Chemistry and Physics, 62nd ed. (CRC, Boca Raton, FL, 1981), E-79.

    Google Scholar 

  25. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970), Chaps. 2 and 5.

    Google Scholar 

  26. F. Meca and A. K. Jonscher, Thin Solid Films 59, 201 (1979).

    Article  CAS  Google Scholar 

  27. H.J. Moller, Prog. Mater. Sci. 35, 205 (1991).

    Article  CAS  Google Scholar 

  28. G.E. Pike and C.H. Seager, J. Appl. Phys. 50, 3414 (1979).

    Article  CAS  Google Scholar 

  29. D. R. Clarke, J. Appl. Phys. 50, 6829 (1979).

    Article  CAS  Google Scholar 

  30. M. M. Mandurah, K. C. Saraswat, C. R. Helms, and T. I. Kamins, J. Appl. Phys. 51, 5755 (1980).

    Article  CAS  Google Scholar 

  31. J. P. Gambino, W. D. Kingery, G. E. Pike, H. R. Philipp, and L. M. Levinson, J. Appl. Phys. 61, 2571 (1987).

    Article  CAS  Google Scholar 

  32. W.Heywang, Solid State Electron. 3, 51 (1961).

    Article  CAS  Google Scholar 

  33. Z.W. Yin, X.Y. Song, and J.W. Feng, Ferroelectrics 94, 269 (1989).

    Article  CAS  Google Scholar 

  34. Y-M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73, 3278 (1990).

    Article  CAS  Google Scholar 

  35. Y-M. Chiang and T. Takagi, J. Am. Ceram. Soc. 73, 3286 (1990).

    Article  CAS  Google Scholar 

  36. D.Y. Wang and K. Umeya, J. Am. Ceram. Soc. 74, 280 (1991).

    Article  CAS  Google Scholar 

  37. R. C. Buchanan, T. R. Armstiong, and R.D. Roseman, Ferroelectrics 135, 343 (1992).

    Article  CAS  Google Scholar 

  38. R. Gerson and H. Jaffe, J. Phys. Chem. Solids 24, 979 (1963).

    Article  CAS  Google Scholar 

  39. D. Y. Wang and K. Umeya, J. Am. Ceram. Soc. 73, 669 (1990).

    Article  CAS  Google Scholar 

  40. D. Y. Wang and K. Umeya, J. Am. Ceram. Soc. 73, 1574 (1990).

    Article  CAS  Google Scholar 

  41. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970), Chap. 1.

    Google Scholar 

  42. B. L. Sharma, in Semiconductors and Semimetals (Academic, New York, 1981), Vol. 15, Chap. 1.

  43. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971), p. 155.

    Google Scholar 

  44. H. R. Philipp and L. M. Levinson, J. Appl. Phys. 47, 3177 (1976).

    Article  CAS  Google Scholar 

  45. G. D. Mahan, L. M. Levinson, and H. R. Philipp, J. Appl. Phys. 50, 2799 (1979).

    Article  CAS  Google Scholar 

  46. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

  47. J. G. Simmons, in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang (McGraw-Hill, New York, 1970), Chap. 14.

    Google Scholar 

  48. C-J. Peng, H. Hu, and S.B. Krupanidhi, Appl. Phys. Lett. 63, 1038 (1993).

    Article  CAS  Google Scholar 

  49. J. R. Yeargan and H. L. Taylor, J. Appl. Phys. 39, 5600 (1968).

    Article  CAS  Google Scholar 

  50. P.V. Lambeck and G.H. Jonker, J. Phys. Chem. Solids 47, 453 (1986).

    Article  CAS  Google Scholar 

  51. P. Wurfel and I. P. Batra, Ferroelectrics 12, 55 (1976).

    Article  Google Scholar 

  52. J.F. Scott, B. Pouligny, K. Dimmler, M. Parris, D. Butler, and S. Eaton, J. Appl. Phys. 62, 4510 (1987).

    Article  CAS  Google Scholar 

  53. J.M.E. Harper, J.J. Cuomo, and H.R. Kaufman, J. Vac. Sci. Technol. 21, 737 (1982).

    Article  CAS  Google Scholar 

  54. U. J. Gibson, in Physics of Thin Films (Academic, New York, 1987), Vol. 13, p. 109.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Krupanidhi, S.B. Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films. Journal of Materials Research 9, 1484–1498 (1994). https://doi.org/10.1557/JMR.1994.1484

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1484

Navigation