Skip to main content
Log in

Thermal properties of organic and inorganic aerogels

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials, solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We found that significant improvements in the thermal insulation property of aerogels are possible by (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of R = 20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m3, if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerogels, Springer Proc. in Physics, edited by J. Fricke (Springer-Verlag, Heidelberg, Germany, 1986), Vol. 6.

  2. J. Fricke and A. Emmerling, in Chemistry, Spectroscopy, and Applications of Sol-Gel Glasses, edited by R. Reisfeld and C. K. Jorgensen, Springer Series on Structure and Bonding (Springer-Verlag, Heidelberg, Germany, 1991), Vol. 77, p. 37.

  3. R. Caps and J. Fricke, in Aerogels, Springer Proc. in Physics, edited by J. Fricke (Springer-Verlag, Heidelberg, Germany, 1986), Vol. 6, p. 104.

  4. J.D. LeMay, R.W. Hopper, L.W. Hrubesh, and R.W. Pekala, MRS Bull. XV, 19 (1990).

    Article  Google Scholar 

  5. X. Lu, M. C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, and R.W. Pekala, Science 255, 971 (1992).

    Article  CAS  Google Scholar 

  6. J. Fricke, X. Lu, P. Wang, D. Buttner, and U. Heinemann, Int. J. Heat Mass Transfer 35, 2305 (1992).

    Article  CAS  Google Scholar 

  7. J. Fricke, E. Hummer, H-J. Morper, and P. Scheuerpflug, in Revue de Physique Apliqueé, edited by R. Vacher, J. Phalippou, J. Pelous, and T. Woignier (Proc. 2nd Int. Symp. Aerogels 24, C4, Les Editions de Physique, Les Ulis Cedex, 1989), p. 87.

  8. J. Gross, J. Fricke, and L. W. Hrubesh, J. Acoust. Soc. Am. 91 (4), 2004 (1992).

    Article  Google Scholar 

  9. J. Gross and J. Fricke, J. Non-Cryst. Solids 145, 217 (1992).

    Article  CAS  Google Scholar 

  10. The Oxide Handbook, edited by G. V. Samsonov (Plenum, New York, 1973).

  11. D. W. Van Krevelen, Properties of Polymers (Elsevier, New York, 1990), p. 527.

  12. J. Gross, J. Fricke, R.W. Pekala, and L.W. Hrubesh, Phys. Rev. B 45 (22), 775 (1992).

    Article  Google Scholar 

  13. X. Lu, M. C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, and R.W. Pekala, Science 255, 974 (1992).

    Article  Google Scholar 

  14. M. Kaviany, Principles of Heat Transfer in Porous Media (Springer-Verlag, New York, 1991), p. 333.

  15. J. Fricke, X. Lu, P. Wang, D. Buttner, and U. Heinemann, Science 255, 2308 (1992).

    Google Scholar 

  16. F-M. Kong, S. S. Hulsey, C. T. Alviso, and R. W. Pekala, in Novel Forms of Carbon, edited by C. L. Renschler, J. J. Pouch, and D. M. Cox (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992), p. 15.

  17. T.M. Tillotson, L.W. Hrubesh, and I.M. Thomas, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 685.

  18. R. W. Pekala, J. Mater. Sci. 24, 3221 (1989).

    Article  CAS  Google Scholar 

  19. R. Caps and J. Fricke, in Aerogels, Springer Proc. in Physics, edited by J. Fricke (Springer-Verlag, Heidelberg, Germany, 1986), Vol. 6, p. 110.

  20. J. Fricke, in Aerogels, Springer Proc. in Physics, edited by J. Fricke (Springer-Verlag, Heidelberg, Germany, 1986), Vol. 6, p. 94.

  21. M. Martin, Thermalux, Inc., private communication.

  22. X. Lu, O. Nilsson, J. Fricke, and R. W. Pekala, J. Appl. Phys. 73, 581 (1993).

    Article  Google Scholar 

  23. K. Kinoshita, CarbonElectrochemical and Physicochemical Properties (John Wiley & Sons, New York, 1988), p. 12

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrubesh, L.W., Pekala, R.W. Thermal properties of organic and inorganic aerogels. Journal of Materials Research 9, 731–738 (1994). https://doi.org/10.1557/JMR.1994.0731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0731

Navigation