Skip to main content
Log in

Formation of mixed oxide powders in flames: Part I. TiO2−SiO2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mixed oxide powders, e.g., Al2O3−TiO2, SiO2−GeO2, and TiO2−SiO2, are used in industry to produce ceramics, optical fibers, catalysts, and paint opacifiers. The properties of these products depend upon the morphology of the powders. Ceramics and optical fibers are produced using either a uniform mixture of multicomponent particles or a uniform solution. The desired morphology for catalysts is a high surface area and many active sites. TiO2 coated with a layer of SiO2 is the desired structure for use as a paint opacifier. In this paper, TiO2−SiO2 mixed oxide powders were synthesized using a counterflow diffusion flame burner. TiCl4 and SiCl4 were used as source materials for the formation of oxide particles in hydrogen-oxygen flames. In situ particle sizes were determined using dynamic light scattering. A thermophoretic sampling method also was used to collect particles directly onto carbon coated grids, and their size, morphology, and crystalline form examined using a transmission electron microscope. A photomultiplier at 90° to the argon ion laser beam was used to measure the light-scattering intensity. The effect of temperature and of Si to Ti concentration ratio on particle morphology was investigated. Strong temperature dependence was observed. At high temperatures, TiO2 particles were covered with discrete SiO2 particles. At low temperatures, the structure changes to TiO2 particles encapsulated by SiO2. TEM diffraction pattern measurements showed that the TiO2 is rutile and the SiO2 is amorphous silica. At high Si to Ti ratios, SiO2-encapsulated TiO2 particles form. At low Si to Ti ratios, one obtains TiO2 particles covered with discrete SiO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Ulrich, C&EN 62, 22 (1984).

    Article  CAS  Google Scholar 

  2. Y. Suyama, K. Ito, and A. Kato, J. Inorg. Nucl. Chem. 37, 1883 (1975).

    Article  CAS  Google Scholar 

  3. F. Asuncion, J. Leyrer, A. R. González-Elipe, G. Munuera, and H. Knozinger, J. Catal. 112, 489 (1988).

    Article  Google Scholar 

  4. T. J. Wiseman, in Characterization of Powder Surfaces, edited by G. D. Parfitt and K. S. W. Sing (Academic Press, New York, 1976), Chap. 4, pp. 159–208.

  5. S. L. Chung and J. L. Katz, Combustion and Flame 61, 271 (1985).

    Article  CAS  Google Scholar 

  6. J. L. Katz and C. H. Hung, “Ultrafine Refractory Particle Formation in Counterflow Diffusion Flames,” Combustion Sci. Technol. (1992, in press).

  7. H.J. Kostkowski and H.P. Broida, J. Opt. Soc. Am. 46, 246 (1956).

    Article  CAS  Google Scholar 

  8. G. H. Dieke and H. M. Crosswhite, J. Quant. Spectros. Radiat. Transfer 2, 97 (1962).

    Article  CAS  Google Scholar 

  9. S. L. Chung, Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD, 1985.

  10. K. Tokuhashi, S. Horiguchi, Y. Urano, M. Iwasaka, H. Ohtani, and S. Kondo, Combustion and Flame 82, 40 (1990).

    Article  CAS  Google Scholar 

  11. R.A. Dobbins and C.M. Megaridis, Langmuir 3, 254 (1987).

    Article  CAS  Google Scholar 

  12. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

    Google Scholar 

  13. J.D. Felske, P.F. Hsu, and J.C. Ku, J. Quant. Spectros. Radiat. Transfer 35, 447 (1986).

    Article  CAS  Google Scholar 

  14. C. H. Hung, Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD, 1991.

  15. R. Pecora, Dynamic Light Scattering (Plenum Press, New York, 1985).

    Book  Google Scholar 

  16. W.L. Flower and A.J. Hurd, Appl. Opt. 26, 2236 (1987).

    Article  CAS  Google Scholar 

  17. M. R. Zachariah, D. Chin, H. G. Semerjian, and J. L. Katz, Appl. Opt. 28, 530 (1989).

    Article  CAS  Google Scholar 

  18. H.Z. Cummins and H.L. Swinney, Prog. Opt. 8, 135 (1970).

    Google Scholar 

  19. T. Ohsawa, E. Kobayashi, and T. Ozaki, Combustion and Flame 53, 135 (1983).

    Article  CAS  Google Scholar 

  20. P.H.P. Chang and S.S. Penner, J. Quant. Spectros. Radiat. Transfer 25, 97 (1981).

    Article  Google Scholar 

  21. J. M. Bernard, J. Quant. Spectros. Radiat. Transfer 40, 321 (1988).

    Article  CAS  Google Scholar 

  22. E. M. Levin, C. R. Robbins, and H. F. McMuride, in Phase Diagrams for Ceramics, edited by M. K. Roser (American Chemical Society, Columbus, OH, 1964).

  23. S. L. Chung, M. S. Tsai, and H. D. Lin, Combustion and Flame 85, 134 (1991).

    Article  CAS  Google Scholar 

  24. C.M. Megaridis and R.A. Dobbins, Combustion Sci. Technol. 71, 95 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CH., Katz, J.L. Formation of mixed oxide powders in flames: Part I. TiO2−SiO2. Journal of Materials Research 7, 1861–1869 (1992). https://doi.org/10.1557/JMR.1992.1861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1861

Navigation