Skip to main content
Log in

Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

This article has been updated

Abstract

The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic “five-frequency formula,” which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's “Tm” model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 22 June 2021

    There is typographical error found in article title, the word “fee” should be “fcc”.

References

  1. D. B. Butrymowicz, J. R. Manning, and M. E. Read, J. Phys. Chem. Ref. Data V2 (3), 643 (1973).

    Google Scholar 

  2. D. B. Butrymowicz, J. R. Manning, and M. E. Read, J. Phys. Chem. Ref. Data V3 (2), 527 (1974).

    Google Scholar 

  3. D. B. Butrymowicz, J. R. Manning, and M. E. Read, J. Phys. Chem. Ref. Data V4 (1), 177 (1975).

    Google Scholar 

  4. D. B. Butrymowicz, J. R. Manning, and M. E. Read, J. Phys. Chem. Ref. Data V5 (1), 103 (1976).

    Google Scholar 

  5. P. Dorner, W. Gust, M. B. Hintz, A. Lodding, H. Odelius, and B. Predel, Acta Metall. 28, 291 (1980).

    CAS  Google Scholar 

  6. D. Treheux, A. Heurtel, and P. Guiraldenq, C. R. Acad. Sc. Paris t280, 1191 (1975).

    Google Scholar 

  7. J. Ladet, J. Bernadini, and F. Cabane-Brouty, Scripta Metall. 10, 195 (1976).

    CAS  Google Scholar 

  8. T. Eguchi, Y. Iijima, and K. Hirano, Acta Crystall. A28, S161 (1972).

    Google Scholar 

  9. R. E. Hoffman and D. Turnbull, J. Appl. Phys. 22, 634 (1951).

    CAS  Google Scholar 

  10. C. Herzig and D. Wolter, Z. Metallkunde H4, 273 (1974).

    Google Scholar 

  11. B. Million and B. Kucera, Kovove Mater. 11, 300 (1973).

    CAS  Google Scholar 

  12. R. L. Fogel’son, Y. A. A. Ugay, and I. A. Akimova, Fiz. Met. Metalloved. 41 (3), 653 (1976).

    Google Scholar 

  13. S. K. Sen, M. B. Dutt, and A. K. Barua, Phys. Stat. Sol. (a) 45, 657 (1978).

    CAS  Google Scholar 

  14. S. J. Rothman, N. L. Peterson, and J. J. Robinson, Phys. Stat. Sol. 39, 635 (1970).

    CAS  Google Scholar 

  15. R. L. Fogel’son, I. M. Voronina, and T. I. Somova, Phys. Met. Metall. V46 (1), 163 (1979).

    Google Scholar 

  16. R. L. Fogel’son, Y. A. A. Ugay, and I. A. Akimova, Fiz. Met. Metalloved. 39 (2), 447 (1975).

    Google Scholar 

  17. G. Rein, H. Mehrer, and K. Maier, Phys. Stat. Sol. (a) 45, 253 (1978).

    CAS  Google Scholar 

  18. W. B. Nowak and R. N. Dyer, J. Vac. Sci. Technol. 9, 279 (1971).

    Google Scholar 

  19. R. L. Fogel’son, Y. A. A. Ugay, and A. V. Pokoyev, Fiz. Metal. Metalloved. 33 (5), 1102 (1972).

    Google Scholar 

  20. G. Neumann, M. Pfundstein, and P. Reimerrs, Phil. Mag. A45, 499 (1982).

    Google Scholar 

  21. O. Taguchi, Y. Iijima, and K. Hirano, J. Jap. Inst. Met. 48 (1), 20 (1984).

    CAS  Google Scholar 

  22. M. A. Dayananda and C. W. Kim, Metall. Trans. A10 (9), 1333 (1979).

    Google Scholar 

  23. D. Bergner and K. Schwartz, Neue Hutte, 23 (6), 210 (1978).

    CAS  Google Scholar 

  24. M. P. Macht, V. Naundorf, and R. Dohl, Proceedings of Int. Conf. on Diffusion in Metals and Alloys at Tihany, Hungary, edited by F. J. Kedves and D. L. Beke, Diffusion and Defect Monograph Series No. 7 (1983), Trans. Tech. Pub., Switzerland.

  25. N. L. Peterson, Phys. Rev. 132, 2471 (1963).

    CAS  Google Scholar 

  26. W. C. Mallard, A. B. Gardner, R. F. Bass, and L. M. Slifkin, Phys. Rev. 129, 617 (1963).

    CAS  Google Scholar 

  27. D. Duhl, K. Hirano, and M. Cohen, Acta Metall. 11, 1 (1963).

    CAS  Google Scholar 

  28. K. Monma, H. Suto, and H. Oikawa, J. Jap. Inst. Met. 28, 188 (1964).

    Google Scholar 

  29. R. D. Johnson and B. H. Faulkenberry, ASD-TDR-63-625 (July 1963).

  30. A. D. Kurtz, B. L. Averbach, and M. Cohen, Acta Metall. 3, 442 (1955).

    CAS  Google Scholar 

  31. A. B. Vladmirov, V. N. Kaigorodov, SM Klotsman, and I. Sh. Trachtenberg, Proceeding of Int. Conf. on Diffusion in Metals and Alloys at Tihany, Hungary, edited by F. J. Kedves and D. L. Beke, Diffusion and Defect Monograph Series No. 7 (1983), Trans. Tech. Pub., Switzerland.

  32. N. L. Peterson, Phys. Rev. 136, A568 (1964).

    Google Scholar 

  33. S. Fujikawa, M. Werner, H. Mehrer, and A. Seeger, Mat. Sci. Forum V.15–18, 431 (1987).

    Google Scholar 

  34. K. Meinel and M. Klaua, Sitzungsberichte der AdW der DDR, No. 17N, 57 (1978).

  35. O. Kubaschewski, Trans. Faraday Soc. 46, 713 (1950).

    CAS  Google Scholar 

  36. G. M. Neumann, in Diffusion Processes, edited by J. N. Sherwood, A. V. Chadwick, W. M. Muir, and F. L. Swinton (Gordon and Breach Science Publishers, New York), p. 329.

  37. T. F. Archbold and W. H. King, Trans. Met. Soc. AIME 233, 839 (1965).

    CAS  Google Scholar 

  38. K. J. Anusavice, J. J. Pinayan, H. Oikawa, and T. De Hoff, Trans. AIME 242, 2 (1968).

    Google Scholar 

  39. V. A. Gorbacher, S. M. Klotsman, Ya. A. Rabovski, V. K. Talinski, and A. N. Timofeev, Fiz. Met. I. Metalloved 34, 879 (1972).

    Google Scholar 

  40. R. R. Sippel, Phys. Rev. 115, 1141 (1959).

    Google Scholar 

  41. C. T. Tomizuka, Bull. Am. Phys. Soc. 2, 123 (1957).

    CAS  Google Scholar 

  42. T. J. Renouf, Phil. Mag. 22, 359 (1970).

    CAS  Google Scholar 

  43. A. B. Martin and F. Asaro, Phys. Rev. 80, 123 (1950). A. B. Martin, R. D. Johnson, and F. Asaro, J. Appl. Phys. 25, 364 (1954).

    CAS  Google Scholar 

  44. C. A. Machliet, Phys. Rev. 109 (6), 1964 (1958).

  45. A. Ikushima, J. Phys. Soc. Japan 14 (11), 1636 (1959).

    CAS  Google Scholar 

  46. K. Monma, H. Suto, and H. Oikawa, Nippon Kinsoku Gakkaishi 28, 192 (1964).

    Google Scholar 

  47. F. D. Jaumot and A. Sawatskii, J. Appl. Phys. 27, 1186 (1956).

    CAS  Google Scholar 

  48. H. W. Mead and C. E. Birchenall, Trans. Met. Soc. AIME 209 (7), 874 (1957).

    Google Scholar 

  49. T. Hirone, S. Miura, and T. Suzuoka, J. Phys. Soc. Japan 16 (12), 2456 (1961).

    Google Scholar 

  50. A. Sawatskii and F. E. Jaumot, Trans. AIME 209, 1207 (1957).

    Google Scholar 

  51. S. M. Klotsman, N. K. Arkhipova, A. N. Timofeyev, and L. S. Trakhtenberg, Fiz. Metal, i Metalloved. 20 (3), 390 (1965).

    CAS  Google Scholar 

  52. J. E. Reynolds, B. L. Averbach, and M. Cohen, Acta Metall. 5, 29 (1957).

    CAS  Google Scholar 

  53. A. D. Kurtz, B. L. Averbach, and M. Cohen, Acta Metall. 3, 442 (1955).

    CAS  Google Scholar 

  54. M. L. Mercer, “Atom Movements in Alloys,” Ph.D. Thesis, Univ. Leeds (1955).

  55. (a) C. T. Tomizuka, private communication cited by H. M. Morrison, Phil. Mag. 12, 985 (1965). (b) N.H. Nachtrieb, C. T. Tomizuka, and L. G. Schulz: Report AFOSR-TR-60-23, The University of Chicago (1960).

  56. A. Vignes and J. P. Haeussler, Mém. Sci. Rev. Métall. 63, 1091 (1966) (translation available from NTIS as TT 70-57660).

    Google Scholar 

  57. M. S. Anand, S. P. Muraka, and R.Pl. Agarwala, J. Appl. Phys. V36 (12), 3860 (1965).

    Google Scholar 

  58. G. Brunei, G. Cizeron, and P. Lacombe, C. R. Acad. Sc. Paris t270, Serie C, 393 (1970).

  59. A. D. Le Claire and G. Neumann, Chapter 3 in Diffusion in Metals and Alloys, Landolt-Bornstein, New Series, edited by O. Madelung, vol. edited by H. Mehrer (Springer, Heidelberg) (in press).

  60. G. Neumann and V. Tolle, Phil. Mag. A V54 (5), 619 (1986).

    Google Scholar 

  61. N. L. Peterson, J. Nucl. Mater. 69/70, 3 (1978).

  62. W. Schule, Point Defects and Defect Interactions in Metals, edited by J. I. Takamura, M. Doyama, and M. Kiritani (Univ. of Tokyo Press, 1982), p. 551.

  63. G. Neumann and V. Tolle, Phil. Mag. A57 (4), 621 (1988).

    Google Scholar 

  64. A. D. Le Claire, J. Nucl. Mater. 69/70, 70 (1978).

    Google Scholar 

  65. H. Mehrer, J. Phys. F. 2, L11 (1972).

    Google Scholar 

  66. A. D. Le Claire, Phil. Mag. 7, 141 (1962); A. D. Le Claire, Phil. Mag. 10, 641 (1964).

    CAS  Google Scholar 

  67. G. Neumann and W. Hirschwald, Z. Phys. Chem. Neue Folge, Bd. 89, 309 (1974); G. Neumann and W. Hirschwald, Phys. Stat. Sol. (b) 55, 99 (1973).

    CAS  Google Scholar 

  68. G. Neumann, Materials Science Forum V 15–18, 413 (1987); G. Neumann, Phys. Stat. Sol. (b) 144, 329 (1987).

    CAS  Google Scholar 

  69. J. B. Adams and W. G. Wolfer, J. Nucl. Mater. 158, 25 (1988).

    CAS  Google Scholar 

  70. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    CAS  Google Scholar 

  71. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986); Errata: to be published.

    CAS  Google Scholar 

  72. M. S. Daw and R. D. Hatcher, Sol. St. Comm. 56, 697 (1985).

    CAS  Google Scholar 

  73. S. M. Foiles, Phys. Rev. B32, 3409 (1985).

    Google Scholar 

  74. S. M. Foiles, Surf. Sci. 191, L779 (1987); M. S. Daw and S. M. Foiles, Phys. Rev. Lett. 59, 2756 (1987).

    CAS  Google Scholar 

  75. M. S. Daw, M. I. Baskes, C. L. Bisson, and W. G. Wolfer, in Modelling Environmental Effects on Crack Growth Processes, edited by R. H. Jones and W. W. Gerberich (Metallurgical Society of AIME, New York, 1986).

    Google Scholar 

  76. S. M. Foiles, Phys. Rev. B 32, 7685 (1985).

    CAS  Google Scholar 

  77. S. M. Foiles and M. S. Daw, J. Mater. Res. 2, 5 (1987); S. M. Foiles, in High Temperature Ordered Intermetallic Alloys II, edited by N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Materials Research Society, Pittsburgh, PA, 1987).

    CAS  Google Scholar 

  78. W. Wycisk and M. Feller-Kniepmeier, J. Nucl. Mater. 69/70, 616 (1978).

    Google Scholar 

  79. L. C. Smedskjaer, M. J. Fluss, D. G. Legnini, M. K. Chason, and R. W. Siegel, J. Phys. F: Metal Phys. 11, 2221 (1981).

    CAS  Google Scholar 

  80. Y. A. Kraftmakher and P. G. Strelkov, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schumacher, W. Schilling, and J. Diehl (North-Holland, Amsterdam, 1970), p. 59.

    Google Scholar 

  81. K. Kuribayashi, D. Eng. Thesis, University of Tokyo (1975), quoted by M. Doyama and J. S. Koehler, Acta Metall. 24, 871 (1976).

  82. R. W. Balluffi, J. Nucl. Mater. 69/70, 240 (1978).

    Google Scholar 

  83. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).

    Google Scholar 

  84. Metal Reference Book, 5th ed., edited by C. J. Smith (Butterworth’s, London, 1976), p. 186.

  85. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  86. A. Seeger and H. Mehrer, in Vacancies and Interstitials in Metals, Ref. 74, p. 1.

  87. J. S. Koehler, in Vacancies and Interstitials in Metals, Ref. 74, p. 169.

  88. H. Kronmuller, in Vacancies and Interstitials in Metals, Ref. 74, p. 183.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J.B., Foiles, S.M. & Wolfer, W.G. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method. Journal of Materials Research 4, 102–112 (1989). https://doi.org/10.1557/JMR.1989.0102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0102

Navigation