Skip to main content
Log in

Phase selection in electrohydrodynamic atomization of alumina

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Electrohydrodynamic atomization’has been adapted to produce Al2O3 powders ranging in size from 10 nm to 300 μm. Microstructural characterization using x-ray diffraction, scanning, and transmission electron microscopy reveals changes in phase selection as a function of particle size, hence supercooling. Amorphous powders are common below 100 nm in diameter. Cubic spinel γ is found in single phase form between 100 nm and 2μm, and partially transformed to δ between 2 and 20 μm. There is also evidence of σ and θ or a precursor of θ forming directly from the liquid above 5 μm. The stable corundum structure is consistently found above 20 μm but exhibits three different morphologies: faceted, dendritic, and cellular. Phase selection is examined on the basis of fundamental thermodynamic and kinetic considerations and results from computer models predicting the thermal history of the powders. It is concluded that metastable phases require the elimination of catalytic sites for the nucleation of a and are thus more likely to form in the smaller powders. Furthermore, submicron powders achieve sufficiently high cooling rates to preserve the metastable phases formed (γ), but those higher than ∼ 1 μm experience a thermal excursion long enough to transform γ to more stable forms of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Levi and R. Mehrabian, Metall. Trans. A 13, 221 (1982).

    Article  Google Scholar 

  2. C. G. Levi and R. Mehrabian, in Undercooled Alloy Phases, edited by E. W. Collings and C. C. Koch (The Metallurgical Society, Warrendale, PA, 1987), pp. 345–374.

  3. M. C. Brockway and R. R. Wills, “Rapid Solidification of Ceramics, A Technology Assessment,” Metals and Ceramics Information Center Report MCIC-84-49 (1984).

  4. M. L. Kronberg, Acta Metall. 5, 507 (1957).

    Article  CAS  Google Scholar 

  5. B. C. Lippens and J. H. de Boer, Acta Cryst. 17, 1312 (1964).

    Article  CAS  Google Scholar 

  6. K. Wafers and G. M. Bell, Oxides and Hydroxides of Aluminum, Technical Paper No. 19 (Alcoa Research Laboratories, Alcoa Center, PA, 1972).

  7. G. Ervin, Acta Cryst. 5, 103 (1952).

    Article  CAS  Google Scholar 

  8. H. Saalfeld, Clay Min. Bull. 3, 249 (1958).

    Article  CAS  Google Scholar 

  9. G. W. Brindley and J. O. Choe, J. Min. Soc. Am. 46(7/8), 771 (1961).

    CAS  Google Scholar 

  10. G. Yamaguchi, I. Yasui, and W. Chiu, Bull. Chem. Soc. Jpn. 43, 2478 (1970).

    Article  Google Scholar 

  11. A. M. Lejus, Rev. Int. Hautes Temp. Refract. 1, 53 (1964).

    CAS  Google Scholar 

  12. H. P. Rooksby and C. J. M. Rooymans, Clay Min. Bull. 4, 234 (1961).

    Article  CAS  Google Scholar 

  13. V. Jayaram and C. G. Levi, “The Structure of δ-Alumina Evolved from the Melt and the γδ Transformation,” submitted to Acta Metall.

  14. S. Geller, J. Chem. Phys. 33(3), 676 (1960).

    Article  CAS  Google Scholar 

  15. N. N. Ault, J. Am. Ceram. Soc. 40(3), 69 (1957).

    Article  CAS  Google Scholar 

  16. M. Plummer, J. Appl. Chem. 8, 35 (1958).

    Article  CAS  Google Scholar 

  17. A. R. Das and R. M. Fulrath, in Reactivity of Solids, edited by G. M. Schwab (Elsevier, New York, 1965), pp. 31–44.

  18. R. McPherson, J. Mater. Sci. 8, 851 (1973).

    Article  CAS  Google Scholar 

  19. V. Wilms and H. Herman, Thin Solid Films 39, 251 (1976).

    Article  CAS  Google Scholar 

  20. G. F. Hurley and F. D. Gac, Ceram. Bull. 58, 509 (1979).

    CAS  Google Scholar 

  21. R. McPherson, J. Mater. Sci. 15, 3141 (1980).

    Article  CAS  Google Scholar 

  22. D. Fargeot, P. Lortholary, and A. Dauger, in Ceramic Powders, edited by P. Vincenzini (Elsevier, Amsterdam, 1983), pp. 977–985.

  23. A. Dauger, D. Fargeot, and J. P. Laval, Mater. Res. Soc. Symp. Proc. 21, 207 (1984).

    Article  CAS  Google Scholar 

  24. D. H. Matthiesen and W. T. Petuskey, J. Am. Ceram. Soc. 68(5), C114 (1985).

    Article  CAS  Google Scholar 

  25. L. E. Topol, D. H. Hengstenberg, and M. Blander, J. Non-Cryst. Solids 12, 377 (1973).

    Article  CAS  Google Scholar 

  26. H. Herman, “Properties of Materials Quenched from the Liquid State,” Final Report AR08571.11-MC (1977).

  27. C. M. Jantzen, R. P. Krepski, and H. Herman, Mater. Res. Bull. 15, 1313 (1980).

    Article  CAS  Google Scholar 

  28. A. L. Dragoo and J. J. Diamond, J. Am. Ceram. Soc. 50(11), 568 (1967).

    Article  CAS  Google Scholar 

  29. B. Goranchev and V. Orlinov, Thin Solid Films 70, 111 (1980).

    Article  CAS  Google Scholar 

  30. D. M. Roy, R. Roy, and T. P. O’Holleran, “Innovative Technology for Fabrication of Ceramics: EDS Rapid Solidification Process Application to Specialized Materials,” Final Report Bureau of Mines OFR66-81, 53 (1980).

  31. C. G. Levi and R. Mehrabian, Metall. Trans. A 13, 13 (1982).

    Article  Google Scholar 

  32. D. Shechtman, S. D. Ridder, and R. Mehrabian, in Rapid Solidification Processing, Principles and Technologies III, edited by R. Mehrabian (National Bureau of Standards, Gaithersburg, MD, 1983), pp. 96–104.

  33. O. Salas and C. G. Levi, “Solute Redistribution and Interfacial Stability in Ultrafine Al-Fe-Ce powders,” accepted for publication in Int. J. Rapid Solidification.

  34. M. J. Kaufman and H. L. Fraser, Int. J. Rapid Solidification 1, 27 (1984–85).

    CAS  Google Scholar 

  35. J. F. Mahoney, S. Taylor, and J. Perel, in Proceedings of the 1984 IEEE/IAS Annual Conference, Session on Electrostatic Processes (IEEE, Chicago, IL, 1984).

  36. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976), 2nd ed., p. 905.

    Google Scholar 

  37. C. G. Levi, J. J. Valencia, and R. Mehrabian, in Processing of Structural Metals by Rapid Solidification, edited by F. H. Froes and S. J. Savage (ASM International, Metals Park, OH, 1987), pp. 1–12.

  38. JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data 14, Suppl. 1, 156 (1985).

  39. M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1970), Chap. 9.

    Google Scholar 

  40. J. W. Christian, The Theory of Transformations in Metals and Alloys, (Pergamon, Oxford, 1975), 2nd éd., P. I, Chap. 10.

  41. C. G. Levi, Metall. Trans. A 19, 699 (1988).

    Article  Google Scholar 

  42. A. S. Skapski, Acta Met. 4, 576 (1956).

    Article  CAS  Google Scholar 

  43. W. D. Kingery, J. Am. Ceram. Soc. 37(2), 42 (1954).

    Article  CAS  Google Scholar 

  44. C. J. P. Steiner, D. H. P. Hasselman, and R. M. Spriggs, J. Am. Ceram. Soc. 54(8), 412 (1971).

    Article  CAS  Google Scholar 

  45. D. Turnbull, in Ref. 2, pp. 3–22.

  46. H. J. Perepezko, B. A. Mueller, and K. Ohsaka, in Ref. 2, pp. 289–320.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, C.G., Jayaram, V., Valencia, J.J. et al. Phase selection in electrohydrodynamic atomization of alumina. Journal of Materials Research 3, 969–983 (1988). https://doi.org/10.1557/JMR.1988.0969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.0969

Navigation