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Abstract

We establish vortex dynamics for the time-dependent Ginzburg–Landau equation for asymptotically
large numbers of vortices for the problem without a gauge field and either Dirichlet or Neumann
boundary conditions. As our main tool, we establish quantitative bounds on several fundamental
quantities, including the kinetic energy, that lead to explicit convergence rates. For dilute vortex
liquids, we prove that sequences of solutions converge to the hydrodynamic limit.
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1. Introduction

Let u : [0,∞)×Ω → C satisfy the scaled Ginzburg–Landau equation

1
|log ε|

∂t u = ∆u +
1
ε2

u
(
1− |u|2

)
(1)

with either Dirichlet boundary conditions

u = einθ+iϕ? on ∂Ω (2)

with ϕ? ∈ C2,
∫
∂Ω
∂τϕ? = 0, so deg(u; ∂Ω)= n, or Neumann boundary conditions

∂νu = 0 on ∂Ω. (3)
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We take Ω to be a smooth, simply connected domain in R2 containing the
origin. Equation (1) models the dynamic behavior of superconductors when the
electromagnetic field potential is absent. When a gauge field is present, the
corresponding Gorkov–Eliashberg equations

∂Φu = ∇2
Au +

1
ε2

u
(
1− |u|2

)
E = − curl curl A + jA(u),

(4)

where ∂Φ = ∂t + iΦ, E = ∂t A + ∇Φ, and jA(u) =
(
iu,∇Au

)
, provide a more

complete model of superconductivity.
In order to describe the behavior of solutions of (1) with small ε, we define

some fundamental quantities,

energy density eε(u) =
1
2

∣∣∇u
∣∣2 + 1

4ε2

(
1− |u|2

)2
,

supercurrent j (u) =
(
iu,∇u

)
,

vorticity/Jacobian J (u) = det∇u =
1
2

curl j (u).

Here, (·, ·) denotes the real scalar product of two complex numbers, so (a, b) =
1
2 (āb + ab̄) for a, b ∈ C. Solutions to Equation (1) diffuse the Ginzburg–Landau
energy

Eε(u) =
∫
Ω

eε(u) (5)

via the identity

Eε(u(t))+
∫ t

0

∫
Ω

∣∣∂t u
∣∣2

|log ε|
= Eε(u(0)). (6)

1.1. Vortex dynamics and vortex liquids. A prominent feature of type II
superconductivity is the presence of localized regions, called vortices, where
superconductivity vanishes. In particular, there exist some points {a j }

n
j=1 in Ω

where |u(a j)| = 0. Furthermore, the winding number of the phase around each
vortex is quantized; in particular,

1
2π

∫
∂Br (a j )

τ · j (u) ≈ d ∈ Z\{0}.

In the vicinity of each vortex, the Ginzburg–Landau energy Eε(u) blows up at the
rate π |log ε| + O(1). Bethuel, Brezis, and Hélein showed in [3] that minimizers
of the Ginzburg–Landau energy (5) can be expanded further up to second order:

Eε(u) = n
(
π |log ε| + γ

)
+W (a)+ o(1), (7)
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Vortex Liquids and the Ginzburg–Landau equation 3

where γ is a universal constant,

W (a) = −π
∑
i 6= j

log |ai − a j | + boundary effects (8)

is a renormalized energy, and the winding number about each vortex is one. We
use the shorthand a = (a1, . . . , an) ∈ Ω

n for a collection of n points in Ω here.
This renormalized energy is precisely the bounded domain version of the

Kirchhoff–Onsager functional that arises in two-dimensional incompressible
Euler equations and other settings. The renormalized energy will be discussed in
more detail in Sections 2 and 3. From back-of-the-envelope calculations one finds
that J (u) is quantized and looks like a sum of integer-weighted delta functions;
and so, for small ε, one finds that

J (u) ≈
eε(u)
|log ε|

≈ π

n∑
j=1

δa j

in the case when the winding number about each vortex equals one, and, as ε→ 0,
u limits to

u? =
n∏

j=1

x − a j

|x − a j |
eiψ?,

where ψ? is H 1(Ω). This u? is referred to as the canonical harmonic map when
ψ? is a harmonic function. This limiting behavior has been established in many
situations; see, for example, [3, 31, 40, 19, 20].

When dynamics (1) are turned on, these vortices move according to the gradient
flow of the Kirchhoff–Onsager energy:

ȧ j = −
1
π
∇a j W. (9)

The |log ε| factor in front of (1) is the critical time scale on which vortices will
move, and it can be thought of as the length of time it takes the unscaled time-
dependent Ginzburg–Landau equation to move an O(|log ε|) amount of energy
an O(1) distance. That vortices satisfy (9) in the limit was the subject of a
formal asymptotic study by E [12]. Later, arguments of Lin [29] and Jerrard and
Soner [21] provided rigorous justification of the limit. Both [29] and [21] assume
that the number of vortices is uniformly bounded as ε→ 0. The limit equation (9)
is the gradient flow of W just as (1) is the (rescaled) gradient flow of the integrated
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energy density
∫
Ω

eε(u). The similarity in structure can also be seen by the energy
dissipation identity

W (a(t))+ π
∫ t

0

∣∣ȧ(s)∣∣2 = W (a(0)). (10)

This structure was exploited to give a more abstract proof of the motion law by
Sandier and Serfaty [41] in their Γ -convergence of a gradient flow framework.

In recent years there have been significant advances in understanding the
dynamics of a finite numbers of vortices by Bethuel, Orlandi, and Smets [4]
on R2 and by Serfaty [46] on bounded domains. These results allow for much
weaker initial conditions, handle collisions of plus/minus vortices, and describe
the dynamical behavior of higher-degree vortices.

On the other hand, the behavior of the time-dependent Ginzburg–Landau
equations with asymptotically large numbers of vortices has received mostly
formal treatment. The question of how large numbers of vortices behave in
superconductors is important from both experimental and numerical perspectives.
In the former, typical superconductors contain many millions of vortices per
sample [6, 14], so the large vortex density problem is a fundamental feature of
high- TC superconducting devices. In the latter, point vortex methods provide a
useful class of numerical algorithms for simulating challenging partial differential
equations (PDEs), like vortex sheets; hence, (9) is a reasonable numerical
approximation of the limiting mean field equation with vortex sheet initial data.

In [13], E looks at how the analog of (9) on R2 behaves in a mean field sense
as n → ∞. Defining the vortex density function ωn =

1
n

∑n
j=1 δa j (t), the author

shows that the limiting density, ω = limn→∞ ωn , formally satisfies a weak PDE of
the form

∂tω + div(ωv) = 0

v = ∇
(
∆−1)ω

after rescaling time t . Subsequently, this ordinary differential equation (ODE)
limit on R2 was rigorously established by Lin and Zhang [32].

There are many similarities between this ODE limit problem and the ODE limit
problem arising from the point vortex method for the Euler equations. In the latter
case, it was shown by Schochet [44], and later by Liu and Xin [34], that the vortex
density function for Euler point vortices on R2, which follow the Kirchhoff law

ȧ j = −
1
π
∇
⊥

a j
W (a),

limits to a weak Delort solution to the incompressible Euler equations on R2. Due
to the similarities of the two problems, Lin and Zhang [32] used the approach
of [34] to prove the associated hydrodynamic limit of the ODE (9) on R2.
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Figure 1: Limiting from the Ginzburg–Landau equation directly to the mean field
equation.

The present work is the first to directly couple the Ginzburg–Landau equation
to a mean field PDE. All previous works either prove a PDE to ODE limit for
a finite number of vortices or pass from the ODE to the mean field PDE limit.
Our quantitative results enable us to take the diagonal limit in a rigorous way, as
illustrated in Figure 1.

In order to make the direct connection between the Ginzburg–Landau equation
and the limiting mean field equation, it is necessary to establish two steps. The
first of which entails a proof that (1) can accept asymptotically large numbers
of vortices for long-enough times. The second step involves coupling these
Ginzburg–Landau solutions to an appropriate hydrodynamic limit of (9) on
bounded domains.

1.2. Results. In the following, we let

A . B if A 6 C B

for some C that depends only on Ω and ϕ?. We tacitly assume that ε is small
enough that we can use estimates of the type |log|log ε|| . |log ε|.

We define the excess energy

D(a(t)) = Eε(u(t)−
[
n
(
π |log ε| + γ

)
+W (a(t))

]
,

where γ and W (a(t)) are defined in (7) and (8); the excess energy will be used to
control the deviation of the vortex path from the path defined by the ODE (9). We
also define

ρa =
1
4
{min

j 6=k

∣∣a j − ak

∣∣,min
j

dist(a j , ∂Ω)}

as a measure of how close vortices are to each other or the boundary. We choose
a number ρ? with 0 < ρ? < ρa(0). This defines a time scale

τ0 = inf{t > 0 such that ρa(t) 6 ρ?} > 0
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on which vortices will stay well separated. For ρ 6 ρ?, we set

Ωρ(a) = Ω\ ∪n
j=1 Bρ(a j).

By Ωn∗, we will denote the set of a ∈ Ωn such that ai 6= a j for i 6= j .
Finally, we introduce a weak topology related to the length of a minimal

connection, see [5]:

‖ f ‖Ẇ−1,1(Ω) = sup
‖∇φ‖L∞(Ω)61
φ∈W 1,∞

0 (Ω)

∣∣∣∣∫
Ω

φ f
∣∣∣∣.

This norm provides a good scale-invariant measure of the distance of J (u) and
(eε(u))/(|log ε|) to a sum of delta functions. In particular, if |a j − b j | 6 ρ? for
j = 1, . . . , n, then∥∥∥∥∑

j

δa j −

∑
j

δb j

∥∥∥∥
Ẇ−1,1(Ω)

=

∑
j

∣∣a j − b j

∣∣.
We can now state our first theorem which supplies a long-time existence result

of the vortex motion law for asymptotically large numbers of vortices in the dilute
regime.

THEOREM 1. Suppose that u solves (1) with either (2) or (3). Furthermore, let
n 6 |log ε|

1
200 and ρ? > |log ε|−

1
100 , and suppose that ‖uεn (0)‖L∞(Ω) 6 1,

D(a(0)) . |log ε|−
1
2 , (11)∥∥∥∥J (u(0))− π

n∑
j=1

δa j (0)

∥∥∥∥
Ẇ−1,1(Ω)

. |log ε|−
1
3 . (12)

Then, for all 0 6 t 6 τmax , we have∥∥∥∥eε(u)(t)
|log ε|

−

n∑
j=1

πδa j (t)

∥∥∥∥
Ẇ−1,1(Ω)

. |log ε|−
1
4 , (13)

∥∥∥∥J (u)(t)−
n∑

j=1

πδa j (t)

∥∥∥∥
Ẇ−1,1(Ω)

. |log ε|−
1
4 , (14)

∫
Ωρ? (a(t))

eε(|u(t)|)+
1
4

∣∣∣∣ j (u(t))
|u(t)|

− j (u?(t))
∣∣∣∣2 . |log ε|−

1
5 , (15)∥∥∥∥ j (u(t))

|u(t)|
− j (u?(t))

∥∥∥∥
L

4
3 (Ω)

. |log ε|−
1

10 , (16)
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where j (u?(t)) = j (u?(a(t))),

τmax = min
{
τ0,C

√
|log|log ε||

ρ4
?

n3

}
,

a j(t) solve (9), and C = C(Ω).

Theorem 1 can be extended to initial data having vortex degrees d j = ±1
following the the approach in [23]. We also note from Lemma 14 of [23]
that one can easily construct maps uε?(x; a) that satisfy the well-preparedness
assumptions (11)–(12). Finally, in the case of a bounded number of vortices, it
is well known that the well-preparedness hypothesis is not very important, since
one can show that data will become well prepared almost instantaneously due to
strong convergence estimates, see [29, 21, 4, 46], and we have no reason to expect
a different behavior here.

Given the result above, we can prove that the sequence of solutions converges in
a prescribed sense to the expected hydrodynamic limit. In this theorem we study
only Dirichlet boundary conditions (2), since we need to have the vortex motion
law hold for times of order O(n−1), and in the Neumann case (3) vortices will
migrate to the boundary too quickly.

What type of equations do we expect the vortex density to satisfy in the limit?
Following E’s formal calculations [13] and adapting them to the bounded domain
case with Dirichlet boundary conditions, we rescale time t = nt and consider the
limiting vortex density function ω = limn→∞

1
n

∑n
j=1 δa j (t). We obtain the system

∂tω + div(ωv) = 0

v = 4π∇
(
∆−1

N
)
ω,

(17)

where ∆−1
N : g→ w arises through the Poisson problem

∆w = g in Ω

∂νw =
1

2π
∂τθ on ∂Ω,

(18)

and θ = arg(x + iy). Note that consistency requires that
∫
Ω

g = 1 due to the
Neumann boundary condition.

Our choice of boundary condition (2) is not the most general possible. Up to a
correction by ϕ? (that is asymptotically small as n becomes large) we have chosen
u ≈ ( z

|z| )
n , which makes sense because we assume that 0 ∈ Ω . Following [43], it

is possible to choose any degree-one map U0 : ∂Ω → S1 and to use the boundary
condition u = U n

0 on any simply connected domain with C2 boundary, instead of
(2). While this does not substantially complicate the analysis, we have chosen the
simpler (2), motivated by the case of Ω = B1(0).
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To motivate a notion of an interior weak solution of (17) we follow Lin and
Zhang [32]. If ω is a smooth solution to (17), we multiply by χ ∈ C∞0 ([0, T ]×Ω)
and integrate by parts. Then, writing t for t again,

−

∫ ∫
∂tχω −

1
4π

∫ ∫
∂xkχvk∂x jv j = 0,

where we used ω = 1
4π div v in the interior of Ω . Performing integration by parts

and using ∂x1v2 − ∂x2v1 = 0, we obtain the identity∫
∂xkχvk∂x jv j = −

∫
(∂2

x1
− ∂2

x2
)χ(v2

1 − v
2
2)− 4

∫
∂x1x2χv1v2, (19)

and so we arrive at (20) below. We note that this definition is similar to the one
introduced in [9, 36] for weak solutions to the 2D incompressible Euler equations
except that the associated test functions are exchanged.

DEFINITION 1. We say that ω is a generalized interior weak solution to (17) if,
for all χ ∈ C∞0 ([0, T ] ×Ω),

−

∫ t

0

∫
Ω

ω∂tχ +
1

4π

∫ t

0

∫
Ω

(
∂2

x1
χ − ∂2

x2
χ
)(
v2

1−v
2
2

)
+

1
π

∫ t

0

∫
Ω

∂x1∂x2χ v1v2 = 0,

(20)
where

v j(x) = 4π∂x j∆
−1
N ω = 2

∫
∂x j N (x, y)ω(y) dy.

Here, N (x, y) is the Neumann function, which satisfies

∆N (·, y) = 2πδy in Ω
∂νN (·, y) = ∂τθ on ∂Ω.

We can now state our main result, which shows that we can solve (17)–(18)
with vortex sheet initial data via a subsequence of either solutions of (1) or (9)
with appropriate data.

THEOREM 2. Assume that ω0 ∈ M ∩ Ḣ−1(Ω) satisfies ω0 > 0,
∫
Ω
ω0 = 1,

and supp(ω0) ⊂ {dist(x, ∂Ω) > C0 > 0} for some constant C0. Then
there exists a sequence of initial data uεn (0) with n = |log|log|log εn|||

1
4

number of vortices that satisfies the hypotheses for Theorem 1 such that
((1/n)(eεn (uεn (0)))/(π |log εn|)) → ω0 in M as εn → 0. Such initial data
generates a sequence of solutions uεn (t) of (1) with boundary condition (2) for
times up to T = |log|log εn||

1
7 .

https://doi.org/10.1017/fms.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.6


Vortex Liquids and the Ginzburg–Landau equation 9

Setting t = nt and letting ωεn (t) = ((1/n)((eεn (uεn (t)))/(π |log εn|))), then, for
a subsequence,

ωεn → ω in M(Ω × [0,∞)),

where ω is a generalized interior weak solution, defined above, to

∂tω + div
(
vω
)
= 0

v = 4π∇
(
∆−1

N
)
ω.

(21)

Finally, v(t) ∈ L2
loc(Ω). Here, ∆−1

N f = w if

∆w = f in Ω

∂νw =
1

2π
∂τθ on ∂Ω,

(22)

where θ = arg(x + iy) and
∫
Ω

f = 1.

The convergence to the hydrodynamic limit holds true for a more general
class of initial data similar to those we construct in Theorem 2. This yields the
following result on the limit from the parabolic Ginzburg–Landau equation to the
mean field equation.

THEOREM 3. Let uεn (0) be a sequence of initial data to the Ginzburg–Landau
equation (1) with Dirichlet boundary conditions (2) with ||uεn (0)||L∞(Ω) 6 1 and
satisfies the following hypotheses:∥∥∥∥J (uεn (0))−

n∑
j=1

πδa j (0)

∥∥∥∥
Ẇ−1,1(Ω)

.
∣∣log εn

∣∣− 1
3 , (23)

D(a(0)) .
∣∣log εn

∣∣− 1
2 , (24)

n 6
∣∣log |log

∣∣log εn

∣∣|∣∣ 1
4 , (25)

with a(0) ∈ Ωn satisfying the following:

ρa(0) >
∣∣log |log

∣∣log εn

∣∣|∣∣− 1
3 , (26)

−
1
n2

∑
j 6=k

Nn(a j(0), ak(0)) . 1, (27)

where Nn(·, ·) is defined in Section 3 and is closely related to N (·, ·). Setting t =
nt and letting ωεn (t) = ((1/n)((eεn (uεn (t)))(π |log εn|))), then, for a subsequence,

ωεn → ω in M(Ω × [0,∞)),
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where ω(t) is a generalized interior weak solution to (21) for t ∈ (0,∞). If v =
4π∇

(
∆−1

N
)
ω, defined by (22), then v(t) ∈ L2

loc(Ω).

The assumptions of Theorem 3 may look rather demanding; nevertheless, such
data exist per the construction in the proof of Theorem 2. Furthermore, we
expect that fairly generic data corresponding to a collection of degree-one vortices
will satisfy such assumptions after a short time since the parabolic Ginzburg–
Landau equation quickly dissipates not only the Ginzburg–Landau energy and
the renormalized energy, but also the excess energy; see for example [4, 46].

1.3. Discussion. The issue of whether the weak solution satisfies the correct
boundary condition is a deep and difficult question. Since vorticity can (and
should) concentrate on the boundary, it is difficult to acquire the necessary
regularity to ensure that the boundary conditions are achieved in the classical
weak sense. Some recent progress has been made in [17] by establishing
boundary-coupled weak solutions of the two-dimensional incompressible Euler
equations in exterior domains.

To make a fully consistent limit, it would be interesting to study the question of
uniqueness of the limiting mean field equation (21). In [32], the authors establish
uniqueness for initial data in L∞ with compact support for the problem in R2. A
similar study of regular solutions would be natural for (21)–(22) too.

From formal considerations of (21), the vortex density function satisfies ∂tω +

v · ∇ω = −4πω2, so along the trajectory of the induced velocity one sees that
the density function should decay like t−1. For smooth initial data on R2, Lin and
Zhang [32] proved this fact, which implies that the vorticity spreads out quickly
from a compact set. This behavior implies that we expect most vortices to be
pushed out to the boundary in a similar fashion. This conforms to the picture
presented in Sandier and Soret [43] for global minimizers of the functional Eε(u)
on bounded domains, constrained to a boundary condition of the type u = einθ and
n →∞. Sandier and Soret show that vortices accumulate close to the boundary
of the domain as n grows asymptotically large. Taken together, we should view
Theorem 2 as a mean field description of the vortex density for times in the
mesoscale in the interior of the domain.

The dilute density of the vortex liquid results from two issues. The first is that
we use energy comparison and a Gronwall inequality to pin the vortex positions to

the ODE (9). This results in an upper bound τmax .
√

ρ4
?

n3 |log|log ε|| in Theorem 1.
Integrating methods of [46] and/or [4] should improve some of these bounds.
The second issue arises from the poor bounds on the intervortex distance for the
ODE (9). Better knowledge of how the ODE behaves should improve the vortex
density allowed here.
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Although (1) provides a fertile ground to test the mathematics of the
Gorkov–Eliashberg equations, the more physical problem entails looking
at the hydrodynamic limit of (4). For the Gorkov–Eliashberg equations (4),
corresponding proofs of the vortex motion law are due to the second author [49]
for O(1) fields and Sandier and Serfaty [41] for larger fields, following the formal
asymptotic work of [38]. Formally, it was shown by Chapman, Rubinstein, and
Schatzman [7] that the hydrodynamic limit of the associated ODE arising from
the vortex motion law of (4) converges to a weak solution of

∂tω + div(ωv) = 0

v = ∇
(
∆− I

)−1
ω.

(28)

There has been a lot of recent progress on the limiting equations for the
vortex densities (28). Ambrosio and Serfaty [1] and Ambrosio, Mainini, and
Serfaty [2] study them as a metric gradient flow in the space of measures with
the Wasserstein distance as the natural metric; however, they do not obtain the
convergence. Even when it becomes possible to carry out the program outlined
in the survey of Serfaty [47] and to directly obtain the Wasserstein gradient flow
studied in [1, 2] from the Gorkov–Eliashberg equation by the Γ -convergence of a
gradient flow type result, we believe that our approach will still be useful. On the
one hand, it provides quantitative bounds that are useful in type II superconductors
without going to the ε → 0 limit of “extreme” type II superconductivity. More
importantly, as our approach does not rely on the gradient flow structure, it can
be adapted to yield results for more general situations, such as the mixed flows
studied in [26] and [37] for the ungauged problem and in [27] and [48] for the
gauged problem. Such motion laws have physical importance, as they can be
used to explain the sign change in the Hall effect of type II superconductors;
see [11], [24]. Similarly, we expect that our approach can be adapted also to the
Hamiltonian Ginzburg–Landau wave system, where results for the PDE to ODE
limit for finitely many vortices have been found in [18] and [30], and the ODE to
mean field PDE limit has been studied in [33].

1.4. Method. We finish the introduction with an outline of the arguments in
the paper. The general scheme of the paper is to deduce the vortex motion law for
the time-dependent Ginzburg–Landau equations by carefully considering certain
differential identities, in particular the time evolution of the energy density.

Our proof is based on the following differential identities, which hold for
smooth solutions of (1):

mass identity
[

1
|log ε|

∂t −∆−
2
ε2
|u|2

](
|u|2 − 1

)
= 2

∣∣∇u
∣∣2, (29)
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supercurrent identity
1
|log ε|

(
iu, ∂t u

)
= div j (u), (30)

energy identity ∂t eε(u) = div
(
∂t u,∇u

)
−

∣∣∂t u
∣∣2

|log ε|
. (31)

For fixed ε, regularity follows from standard parabolic theory. We remark that
(29) can be used to show that 0 6 |u| 6 1; Equation (30) will be used to show
that j (u) is nearly divergence free in a time-averaged sense.

Identity (31) is crucial in obtaining a lower bound for the kinetic energy. Using
(1) once more, we can also deduce from (31) that

1
|log ε|

∂t eε(u) = div div
(
∇u ⊗∇u −

1
2

eε(u)id
)
−
|∂t u|2

|log ε|2
, (32)

which is the primary tool to establish the vortex motion law.
Passing to the limit ε → 0 in (32) and controlling the growth of the energy

excess would yield a proof of the motion law for bounded numbers of vortices
if the initial energy excess is o(1) as ε → 0. This method is not as powerful as
the elliptic PDE approach of Serfaty [45, 46] or the parabolic PDE approach of
Bethuel, Orlandi, and Smets [4], but it provides a way to avoid using convergence
properties in the proof, and we can use quantitative estimates in every step.
Passing to the limit ε → 0 for bounded n, our results are weaker than those in
the literature, but our explicit bounds provide rates of convergence.

Our approach of using differential identities and explicit estimates follows the
program of the second author and Jerrard [23] for the Gross–Pitaevsky equation
i∂t u = ∆u + 1

ε2 u
(
1 − |u|2

)
. Surprisingly, implementing this approach for (1) is

more challenging and requires several new estimates.
One such additional difficulty is that the arguments of all previous vortex

motion law proofs for (1) use a limiting kinetic energy lower bound, which has so
far only been available for a bounded number of vortices. In Theorem 14, one of
our central results, we provide such a bound for a large number of vortices. This
type of estimate is not needed for the Gross–Pitaevsky equation, since one has
conservation of energy for both the PDE and ODE in that case.

We give an overview of the contents of the rest of the paper.
In Section 2, we recall some known results on the renormalized energy.

Lemma 4 connects the gradient of the renormalized energy to the canonical
harmonic map u?, and Proposition 6 quantifies how close u and u? are based
on the excess energy.

In Section 3, we give some detailed results for the renormalized energy in the
Dirichlet case, following Sandier and Soret [43]. These estimates are used to show
that vortices stay away both from each other and the boundary for sufficiently long
times to pass to the hydrodynamic limit under certain conditions.
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In Section 4, we discuss localization estimates for the Jacobian and the energy
density. For the Jacobian, results of [23] yield points ξ j such that ‖J (u) −
π
∑
δξ j‖Ẇ−1,1 is small in a precisely quantified way. We provide a new estimate on

the localization of the Ginzburg–Landau energy density to the same set of delta
functions of the type∥∥∥∥ eε(u)

|log ε|
−

n∑
j=1

πδξ j

∥∥∥∥
Ẇ−1,1(Ω)

.
1
|log ε|

[
W (a)+ nD(a)

]
.

The estimate presented here is a refined (i.e., ε-rate-dependent) version of an
estimate found in Colliander and Jerrard [8]. Therefore, in order to localize
the vortices to a high resolution, we need good estimates on the excess energy,
D(a(t)).

Since the localization and gamma stability error estimates depend explicitly on
the excess energy, it is necessary to understand how the excess energy evolves in
time. By the energy dissipation identities (6) and (10) we see that

D(a(t)) = D(a(0))+ π
∫ t

0

∣∣ȧ∣∣2 − ∫ t

0

∫
Ω

∣∣∂t u
∣∣2

|log ε|
; (33)

consequently, D(a(t)) can be controlled by well-preparedness of the initial data
and a lower bound on the kinetic energy. This lower bound is presented in
Section 5 as Theorem 14:∫ t

0

∫
Ω

∣∣∂t u
∣∣2

|log ε|
− π

∫ t

0

∣∣ȧ∣∣2 > −error,

where error depends explicitly on ε, the number of vortices, the minimal
vortex distance, the time scale, and the localization error. This result provides
a purely quantitative approach to the kinetic energy lower bounds that are found
in [30, 18, 41], each of which relies on compactness properties to get a lower
bound. To establish this result we make quantitative the kinetic energy estimate
of [30], who used the differential identity for the energy density, along with
a limiting result on the equipartitioning of potential energy. Here, we make
use of an optimal quantitative equipartitioning result in [28] that identifies how
close the tensor ∇u ⊗ ∇u is to the diagonal matrix 1

2 |∇u|2id. Placing this
equipartitioning result into the differential identity for the Ginzburg–Landau
energy eε(u), applying a test function∑

χ(x − a j(t))ȧ j(t) · (x − a j(t)), χ a smooth cutoff function,

and integrating over Ω yields the lower bound.
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After these preparations, we prove Theorem 1 in Section 6. The main task is
to understand how close the points ξ j(t), found by the localization estimates, are
to the points a j(t) given by the ODE. To this end, we introduce a quantity η(t)
which serves as a differentiable replacement for π

∑
j |ξ j(t)− a j(t)|.

In Section 6.1, we define various small quantities that serve as error bounds
in our estimates, and several time intervals on which good estimates hold; in
particular, we show that η really controls everything we need.

It therefore suffices to control the growth of η via a Gronwall argument. We
estimate η̇ in Section 6.2, relying on the energy evolution (32). The resulting
simple bound of the type |η̇| . Aε

√
η + oε(1) is not sufficient to apply the

Gronwall inequality globally, but yields a reasonable short-time result. The culprit
for the

√
η is a certain supercurrent estimate that is difficult to improve at a fixed

time.
Section 6.3 provides the necessary improvements by averaging over a short

timescale, ˙〈η〉 . Ãε〈η〉 + oε(1). This technique, taken from [23], makes use of
(30) to obtain a quantitative bound on how far j (u) is from being divergence free.
Using a Hodge decomposition of j (u)

|u| − j (u?) and the fact that j (u?) is divergence
free while curl( j (u)− j (u?) is controlled, we can bound time averages of terms of
the type

∫
Ωρ
ζ
( j (u)
|u| − j (u?)

)
for some prescribed function ζ . As in [23], this part is

fairly technical, but the differences from the Gross–Pitaevsky case are significant
enough that we feel it is necessary to include these details.

The proof of Theorem 1 is finished in Section 6.4, where we show via a
continuity argument that J (u) is localized near the a(t) for long times. In
particular, we obtain the vortex motion law.

In the final section, Section 7, we consider the hydrodynamic limit and prove
Theorems 2 and 3. In the first part of the section, we prove a hydrodynamic
limit of the vortex ODEs for bounded domains which is analogous to the
results of [44, 34] for the Euler point vortex method on R2 and the gradient
flow version of [32] on R2 for bounded domains. The proof requires a careful
expansion of the time-dependent behavior of 1

n

∑n
j=1 δa j (t) integrated against a

test function with compact support. Implementing the strategy of [34, 32] and
using estimates on the Neumann function, we prove the convergence and the local
velocity bound.

To complete the proof of Theorem 2, we show that nonnegative vortex
sheet initial data with compact support can be approximated by a sequence
of a sum of degree-one vortices that satisfy the conditions of our class of
initial data. This improves on the construction in [32], which uses vortex blobs
with arbitrary vorticities. Finally, due to Theorem 1, the quantity ωn(t) =
((1/n)((eε(u(t))) (π |log ε|))) converges to the same limit as the vortex density
function 1

n

∑n
j=1 δa j (t).
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2. The renormalized energy

In this section, we recall some results on the renormalized energy and the
canonical harmonic map.

Recall from [3] the canonical harmonic map u? = u?(α) which satisfies the
following Hodge system:

div j (u?) = 0 curl j (u?) = 2π
n∑

j=1

δα j

with either
j (u?) · τ = n∂τθ + ∂τϕ?

on ∂Ω or
j (u?) · ν = 0

on ∂Ω . There exists a G with ∇⊥G = j (u?), where G(x) = G(x;α) is defined
by the following Poisson equation:

∆G = 2π
n∑

j=1

δα j in Ω (34)

with either
∂νG = n∂τθ + ∂τϕ? on ∂Ω

or
G = 0 on ∂Ω.

The renormalized energy is then defined, recalling Ωρ(α) = Ω \ ∪
n
j=1 Bρ(α j),

as

W (α) = lim
ρ→0

(∫
Ωρ (α)

1
2

∣∣∇u?
∣∣2 − πn log

1
ρ

)
.

We also define the approximate energy as

Wε(α) = W (α)+ n
(
π |log ε| + γ

)
,

where

γ = lim
ε→0

(
inf

u∈H1(B1;C),u(z)=z on ∂B1

Eε(u)− π |log ε|
)

is the constant from [3, Lemma IX.1]. Finally, the excess energy is defined as

D(u;α) = Eε(u)−Wε(α). (35)

We usually simplify this to D(α) when the context is unambiguous.
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We also define the excess energy in the ball Bσ (α j) to be

DBσ (α j ) =

∫
Bσ (α j )

eε(u)−
(
π log

σ

ε
+ γ

)
.

We will use the following characterization of the gradient of the renormalized
energy.

LEMMA 4 (Lin [29], Jerrard and Soner [21], Jerrard [18]). Let α ∈ Ωn∗. Then the
canonical harmonic map u? = u?(·;α) and the renormalized energy W (α) satisfy∫

∂xk xmζ

[(
j (u?)

)
m

(
j (u?)

)
k −

1
2
δkm

∣∣ j (u?)
∣∣2] = − n∑

j=1

∂kζ(α j)
(
∇α j W (α)

)
k,

where ζ ∈ C2(Ω) and ∇2ζ has support in an annular neighborhood of the α j .

Next, we list estimates on the canonical harmonic map and renormalized energy
and their derivatives.

LEMMA 5. There exists a constant C depending only on Ω such that, for every
bounded, open Ω ⊂ R2, α ∈ Ωn∗, the renormalized energy W (α), canonical
harmonic map u?(·, ;α) and its potential G(·;α) as defined in (34) satisfy

‖ j (u?)‖L∞(Ωr (α)) = ‖∇G‖L∞(Ωr (α)) 6
2n
r

(36)

for all r 6 ρα, and

|∇i W (α)| 6
Cn
ρα
, |∇i∇ j W (α)| 6

Cn
ρ2
α

, (37)

for every i, j ∈ {1, . . . , n}.
We also have the upper bound

W (α) 6 C
(

n3
+

n2

ρ2
α

)
. (38)

Finally, let α = (α1, . . . , αn) and α′ = (α′1, . . . , α
′

n) with α, α′ ∈Ωn∗. LetΩr (α,

α′) = Ω\
(
∪

n
j=1 Br (α j) ∪ Br (α

′

j)
)
. Then

∥∥ j (u?)(α)− j (u?)(α′)
∥∥

L∞(Ωr (α,α′))
6

1
r 2

n∑
j=1

∣∣α j − α
′

j

∣∣ (39)
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for all r 6 min{ρα, ρα′}, and additionally, for 1 < p < 2,

‖ j (u?(α))− j (u?(α′))‖L p 6

(
π
∑
|αi − α

′

i |

) 2
p−1

(2nπ)2−
2
p . (40)

Proof. The Neumann boundary condition results are proved in Lemma 10,
Lemma 11, and Lemma 13 of [23]; we note a typo in the statement of estimate
(38) in [23]. Corresponding results for the Dirichlet boundary condition can be
established by using similar arguments. Further estimates in the Dirichlet case are
discussed in Section 3.

Finally, we will need the following quantitative coercivity or Γ -stability result
for the renormalized energy.

PROPOSITION 6 (Jerrard–Spirn, Theorem 2 of [23]). Let Ω be a bounded, open
simply connected subset of R2 with C1 boundary. Then there exist constants C,
K? depending only on Ω such that, for any u ∈ H 1(Ω;C), if there exists n > 0,
finite, with α = (α1, . . . , αn) ∈ Ω

n∗ such that∥∥∥∥J (u)−
n∑

j=1

πδα j

∥∥∥∥
Ẇ−1,1

6 sε for some sε ∈ [ε
√

log(ρα/ε), ρα/K?],

and if 4sε 6 σ ∗ =

√
ρα
n3

(
sε + εEε(u)

)
6 ρα

K?
, then

∫
Ωσ∗ (α)

eε(|u|)+
1
4

∣∣∣∣ j (u)
|u|
− j (u?(α))

∣∣∣∣2 6 D(α)+ C

√
n5

ρα

(
sε + εEε(u)

)
. (41)

Finally, ∥∥ j (u)− j (u?(α))
∥∥

L
4
3
6 C

√
D(α)+ error

and

error 6 Cε
1
2 Eε(u)

3
4

+ Cn
(
sε + εEε(u)

) 1
4

[(
n
ρα

) 1
4

+ ρ
1
4
α

(
1+

√
Eε(u)

n3

)]
.

3. Estimates for the Dirichlet case

In this section, we provide estimates on the Neumann functions that comprise
the renormalized energy in the Dirichlet case. These estimates will be used both
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to generate long-lived solutions of (1) with asymptotically many vortices and to
provide kernel estimates for the hydrodynamic limit theorem.

We follow the approach of Sandier and Soret [43] to define the renormalized
energy in terms of Neumann functions. In particular, let Nn(x, y) denote the
Neumann function which satisfies the following equation:

∆Nn(·, y) = 2πδy in Ω

∂νNn(·, y) = ∂τθ +
1
n
∂τϕ? on ∂Ω∫

∂Ω

Nn(·, y)
(
∂τθ +

1
n
∂τϕ?

)
= 0

and the limiting Neumann function N (x, y) = N∞(x, y) which satisfies the
following equation:

∆N (·, y) = 2πδy in Ω
∂νN (·, y) = ∂τθ on ∂Ω∫

∂Ω

N (·, y)∂τθ = 0.

We also define Hn(x, y) = Nn(x, y) − log |x − y| and H(x, y) = N (x, y) −
log |x − y| to be the harmonic pieces of the Neumann functions Nn(x, y) and
N (x, y), respectively. Then

W (a1, . . . , an) = −π
∑
j 6=k

Nn(a j , ak)− π

n∑
j=1

Hn(a j , a j); (42)

see [3, 43].
We state the following useful set of estimates.

LEMMA 7 (Sandier–Soret [43]). The Neumann function Nn(x, y) satisfies, for
1 6 n 6∞, the following estimates.

(1) Nn(x, y) = Nn(y, x).

(2) Nn(x, y) = log |x − y| + Hn(x, y), where Hn(x, y) is continuous on Ω ×
Ω ∪Ω ×Ω .

(3) Nn(x, y) = 2 log |x − y| + H̃n(x, y), where H̃n is continuous on ∂Ω ×Ω ∪
Ω × ∂Ω .

In the proof of Lemma 7, the authors generate Hn(x, y) in steps. WhenΩ = B1

and ∂νN (·, y)= 1, then H(x, y)= Ĥ(x, y), where Ĥ can be explicitly computed:

Ĥ(x, y) = log |1− x y|. (43)
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For nontrivial ∂νNn(·, y) = fn = ∂τθ +
1
n ∂τϕ?, one finds that Ĥn satisfies Ĥ fn (x,

y) = Ĥ(x, y) + P(x) + Q(y), where P(x) and Q(y) are harmonic in B1 and
bounded and continuous up to the boundary. Finally, for simply connected domain
Ω , let w(z) denote the conformal mapping of Ω into B1. Then one finds that

Hn(x, y) = Ĥ f̂n (w(x), w(y)), (44)

where f̂n(x) is defined as f̂n(w(z)) = fn(z)/|w′(z)|. We note again that in our
case f̂n(x) = ∂τθ + 1

n ∂τϕ?.
Using (42) and Lemma 7, we prove the following lemma that provides a lower

bound on the intervortex distance as a function of the renormalized energy.

LEMMA 8. Let W (a) be the renormalized energy for the Dirichlet case. Then

ρa > e−
1
π

W (a)−Cn2

for some constant C that depends only on Ω and ϕ?.

Proof. Since the domain is bounded, we have from (2) and (3) of the Sandier–
Soret lemma that

1
π

W (a) = −
∑
j 6=k

Nn(a j , ak)−
∑

j

Hn(a j , a j)

> log[min{min
j 6=k
{|a j − ak |},min

j
{dist(a j , ∂Ω)}}]

−1
− Cn2

> log ρ−1
a − Cn2,

where C depends on ϕ? and Ω . Therefore,

ρa = elog ρa > e−
1
π

W (a)−Cn2
.

The following proposition gives a class of data where a good bound on the
minimal intervortex distance holds for all time.

PROPOSITION 9. Assume that a j(t) are solutions to

ȧ j = −
1
π
∇a j W (a)

with the renormalized energy W arising from the Dirichlet boundary condition

(2). If ρa(0) >
∣∣log |log|log ε||

∣∣− 1
3 and n 6

∣∣log |log|log ε||
∣∣ 1

4 , then the a j(t) satisfy

ρa(t) >
1
C
|log|log ε||−

1
10

for all t .
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Proof. From our assumptions on ρa(0) and n, we have

W (a(0)) 6 C
n2

ρa(0)
6 C |log|log|log ε|||

5
6 .

Since W (a(t)) 6 W (a(0)), from Lemma 8 we see that

ρ−1
a(t) 6 Ce

1
π

W (a(t))+Cn2
6 Ce

1
π

W (a(0))+Cn2

6 CeC |log|log|log ε|||
5
6 6 Ce

1
10 |log|log|log ε|||

for all time.

We note that for this class of initial data, and setting ρ? = |log||log ε|||−
1
6 so

ρa(t) > ρ?, the quantity T = C
√
|log|log ε|| ρ

4
?

n3 that appears in the assumptions of
Theorem 1 satisfies T & 1

n , since

C

√
|log|log ε||

ρ4
?

n3
> C

|log|log ε||
1
6

|log|log|log ε|||
3
4
> |log|log ε||

1
7 &

1
n
,

so the time rescaling in Theorem 2 makes sense.

4. Localization results

In this section, we discuss quantitative estimates that show how well the
fundamental quantities J (u) and ((eε(u))/(|log ε|)) are approximated by sums
of point masses. For J (u), these results were shown in [22, 23]; for the energy,
they are new.

PROPOSITION 10 (Jerrard–Spirn, Theorem 3 of [23]). LetΩ be a bounded, open,
simply connected subset of R2 with C1 boundary. Then there exist constants C > 0
and C? > 2, with C? = max{K?,

1
4 diam(Ω)} and K? being the constant from

Proposition 6, such that the following property holds.
For any u ∈ H 1(Ω;C), if there exist n > 0, α =

(
α1, . . . , αn

)
∈ Ωn∗ such that∥∥∥∥J (u)−

n∑
j=1

πδα j

∥∥∥∥
Ẇ−1,1

6
ρα

8C?n5
,

and if in addition Eε(u) > 1 and[
n5

ρα
Eε(u)+

n10

ρ2
α

√
Eε(u)

]
6

1
ε
, (45)
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then there exist (ξ1, . . . , ξn) ∈ Ω
n∗ such that |ξi − αi | 6

ρα
2C?n4 for all i , and∥∥∥∥J (u)−

n∑
j=1

πδξ j

∥∥∥∥
Ẇ−1,1

6 C ε

[
n(C + D(α))2e

1
π

D(α)
+ (C + D(α))

n5

ρα
+ Eε(u)

]
.

We now state a result that clarifies the convergence of ((eε(u))/(|log ε|)) to a
set of delta functions.

THEOREM 11. Let u satisfy the same hypotheses as Proposition 10. Then the
{ξ j }

n
j=1 found in Proposition 10 satisfy∥∥∥∥ eε(u)

|log ε|
− π

n∑
i=1

δξi

∥∥∥∥
Ẇ−1,1

(46)

6
C
|log ε|

[
n
(

D(α)+ log
n4

ρα
+ C

)
+W (α)

]
.

To prove Theorem 11, we make precise (and quantitative) an argument found
in [8]. The first step is a moment estimate on the Ginzburg–Landau energy about
the vortex core.

LEMMA 12. If ‖J (u) − πδ0‖Ẇ−1,1(Br )
6 r

4 and
∣∣∫

Br
eε(u) − π ln r

ε

∣∣ = K0, then
there exist ξ ∈ Br/2(0) and a constant C, independent of K0 and u, such that∫

Br

|x − ξ |eε(u) 6 rC(K0 + 1). (47)

Proof. By Theorem 1.2’ of [22], then there exists ξ ∈ Br/2(0) such that, for any
τ < r − |ξ | and ε 6 σ < τ ,∫

Bτ (ξ)\Bσ (ξ)
eε(u) > π ln

τ

σ
− K0 − C. (48)

From (48), we see that∫
Bτ (ξ)\Bε(ξ)

eε(u) > π ln
τ

ε
− K0 − C, (49)
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so, from (49), and the assumption on the energy,∫
Bε(ξ)

eε(u)+
∫

Br (0)\Bτ (ξ)
eε(u) 6 π ln

r
ε
+ K0 − π ln

τ

ε
+ K0 + C

6 π ln
r
τ
+ C K0 + C.

Now, we look at the energy in the annular set B2− j\B2−( j+1)(ξ) ⊂ Br\Bε(ξ). In
particular,∫

B2− j \B2−( j+1) (ξ)

eε(u) =
∫

Br

eε(u)−
∫

Br \B2− j (ξ)

eε(u)−
∫

B2−( j+1) (ξ)

eε(u)

6 π ln
r
ε
+ K0 − π ln

r
2− j
+ C(K0 + 1)

− π ln
2−( j+1)

ε
+ C(K0 + 1)

= π ln 2+ 2C(K0 + 1) = C(K0 + 1).

Next, we prove the claim. If we let 2−Mε =
r
2 and 2−Nε = ε, then∫

Br

|x − ξ |eε(u) =
∫

Bε

|x − ξ |eε(u)+
∫

Br \Br/2(ξ)

|x − ξ |eε(u)

+

Nε∑
j=Mε

∫
B2− j \B2−( j+1) (ξ)

|x − ξ |eε(u)

6 rπ ln
r

r/2
C(K0 + 1)+

Nε∑
j=Mε

2− j C(K0)

6 rC(K0 + 1),

since
∑Nε

j=Mε
2− j 6 r .

In order to establish the proof of the theorem, we use the following local energy
lower bound.

LEMMA 13 (Jerrard–Spirn, Theorem 1.3 of [22]). There exists an absolute
constant C > 0 such that, if u ∈ H 1(Bσ ) satisfies∥∥J (u)− πδ0

∥∥
Ẇ−1,1(Bσ )

6
σ

4
,

then

0 6 DBσ + C
ε

σ

√
log

σ

ε
+

C
σ

∥∥J (u)− πδ0

∥∥
Ẇ−1,1(Bσ )

.
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We now present the following proof.

Proof of Theorem 11. From the proof of Proposition 10 in [23], C? satisfies ρα
C?

6
1
2 . Then, choosing σ = ρα

2C?n4 , we find that

4‖J (u)−
∑

πδα j‖Ẇ−1,1 6
ρα

2C?n5
=
σ

n
6 σ 6

ρα

nK?

, (50)

where K? is the constant from Proposition 6. Therefore (50) implies that

‖J (u)− πδα j‖Ẇ−1,1(Bσ (α j ))
6
σ

4
. (51)

(1) Given the choice of σ , we claim that the following bounds hold:

−
C
n

6 DBσ (α j ) 6 D(α)+ C (52)∫
Ωσ

eε(u) 6 πn log
1
σ
+ D(α)+W (α)+ C. (53)

In order to prove (52), we note that (45), (50), (51), and Lemma 13 imply that

0 6 DBσ (α j ) + C
ε

σ

√
log

σ

ε
+

C
σ

∥∥J (u)− πδα j

∥∥
Ẇ−1,1(Bσ (α j ))

6 DBσ (α j ) + Cε
n5

ρα
|log ε| +

C
n

6 DBσ (α j ) +
C
n
.

To prove the upper bound, we use the following inequality, which can be found
in the proof of Theorem 3 in [23].

D(α) =
∫
Ωσ (α)

[eε(u)− eε(u?)] +
n∑

j=1

DBσ (αi ) + O
((

nσ
ρα

)2)

>
∫
Ωσ (α)

eε(|u|)+
1
4

∣∣∣∣ j (u)
|u|
− j (u?)

∣∣∣∣2 + n∑
j=1

DBσ (αi ) − C,

since σ = ρα
2C?n4 6 ρα

n . Thus
∑n

i=1 DBσ (αi ) 6 D(α)+ C , and hence

DBσ (αi ) 6 D(α)+ C, (54)

since DBσ (α j ) > −
C
n for each j ∈ {1, . . . , n}. This finishes the proof of (52).

For (53), we again write D(α) =
∫
Ωσ

eε(u) − eε(u?) +
∑

DBσ (αi ) + O(( nσ
ρα
)2)

and use Lemma 12 of [23] to estimate∫
Ωσ

eε(u) = D(α)−
∑

DBσ (αi ) +

∫
Ωσ

eε(u?)+ O
((

nσ
ρα

)2)
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= D(α)−
∑

DBσ (αi ) + O
((

nσ
ρα

)2)
+ πn log

1
σ
+W (α)+ O

(
n3σ 2

ρ2
α

)
6 πn log

1
σ
+ D(α)+W (α)+ C,

where we again use that σ = ρα
2C?n4 .

(2) From Lemma 12, and Equations (52) and (51), there exists a ξ j in Bσ/2(α j)

for each j = {1, . . . , n} such that∫
Bσ (α j )

|x − ξ j |eε(u) 6 Cσ
(
D(α)+ C

)
. (55)

Next, we choose an arbitrary φ ∈ W 1,∞
0 (Ω). Then∣∣∣∣∫

Ω

φ

(
eε(u)
|log ε|

− π
∑

δξ j

)∣∣∣∣ 6 ∣∣∣∣∫
Ωσ

φ
eε(u)
|log ε|

∣∣∣∣
+

n∑
j=1

∣∣∣∣∫
Bσ (α j )

φ

(
eε(u)
|log ε|

− πδξ j

)∣∣∣∣
= A + B.

We first handle A. Since
∥∥φ∥∥L∞(Ω) 6 diam(Ω), from (53),∣∣∣∣∫

Ωσ

φ(x)
eε(u)
|log ε|

∣∣∣∣ 6 diam(Ω)
|log ε|

[
πn log

1
σ
+ D(α)+W (α)+ C

]
. (56)

Next, we estimate B. Without loss of generality, assume that α j = 0 and ξ j = ξ ,
and again choosing x0 ∈ ∂Ω , then∣∣∣∣∫

Bσ

φ

(
eε(u)
|log ε|

− πδξ

)∣∣∣∣ 6 ∣∣∣∣∫
Bσ

(
φ(x)− φ(ξ)

)
eε(u)
|log ε|

∣∣∣∣
+

∣∣∣∣φ(ξ)∣∣∣∣∣∣∣∣∫
Bσ

eε(u)
|log ε|

− πδξ

∣∣∣∣
6

∣∣∣∣∫
Bσ

|x − ξ |
eε(u)
|log ε|

∣∣∣∣+ diam(Ω)
∣∣∣∣∫

Bσ

eε(u)
|log ε|

− πδξ

∣∣∣∣
= B1 + B2.

From (55), we have

B1 6
C
|log ε|

σ
(
D(α)+ C

)
.
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However,
∣∣∫

Bσ
eε(u)− π |log ε|

∣∣ 6 π log 1
σ
+ DBσ + γ implies that

B2 6
diam(Ω)
|log ε|

[
log

1
σ
+ D(α)+ C

]
.

Since σ = ρα
K2n4 6 1,

B1 + B2 6
C
|log ε|

[
log

K2n4

ρα
+ D(α)+ C

]
.

Combining the bound on B with bound (56) on A yields∣∣∣∣∫
Ω

φ

(
eε(u)
|log ε|

−

∑
πδξ j

)∣∣∣∣ 6 C
|log ε|

[
n(D(α)+ log

n4

ρα
+ C)+W (α)

]
,

and (46) follows.

5. Quantitative bounds on the kinetic energy

We now present a kinetic energy bound for fixed ε. Similar bounds with errors
of the form oε(1) can be found in [18, 30, 42]. Our method of proof is inspired by
the choice of test function found in the proof of Theorem 3 in [25].

THEOREM 14. Let u(t) be a smooth solution to (1) and a(t) a solution to (9) on
[0, T ] for some T & 1 with ρa(t) > ρ? for all 0 6 t 6 T , and assume that∥∥∥∥J (u(t))−

n∑
j=1

πδa j (t)

∥∥∥∥
Ẇ−1,1

6
ρ?

8C?n5
,

D(a(t)) 6 1, and
n14

ρ4
?

6 |log ε|

(57)

with C? the constant from Proposition 10. Then there exists ξ(t) = (ξ1(t), . . . ,
ξn(t)) such that ∥∥∥∥eε(u(t))

|log ε|
−

n∑
j=1

πδξ j (t)

∥∥∥∥
Ẇ−1,1

.
n2

ρ2
? |log ε|

, (58)

and for any 0 6 t1 < t2 6 T

π

∫ t2

t1

n∑
j=1

|ȧ j |
2 6

∫ t2

t1

∫
Ω

|∂t u|2

|log ε|
+CAε

[
sup

t∈[t1,t2]

∑
j

∣∣ξ j(t)− a j(t)
∣∣+ 1

|log ε|
1
2

]
,

(59)
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where

Aε :=
n3T
ρ3
?

and C depends only on Ω and ϕ?.
Furthermore, if D(a(0)) . n3T

ρ3
? |log ε|

1
2

, then

D(ξ(t)) . Aε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
, (60)

and ∫
Ωρ? (ξ)

eε(|u|)+
∣∣∣∣ j (u)
|u|
− j (u?)(ξ(t))

∣∣∣∣2
. Aε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
, (61)∥∥ j (u)− j (u?(ξ, t))

∥∥
L

4
3

.

√√√√Aε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
. (62)

We prove a slightly stronger fact that the kinetic energy, localized at the vortex
balls, is bounded below by the ODE kinetic energy; see (73) below.

A similar theorem was proved in [28] for a single vortex that stays an O(1)
distance from the boundary for an O(1) time. Here we prove a much more explicit
estimate. The major tool to establishing a finite-ε bound on the kinetic energy is
the following optimal result on the equipartitioning of Ginzburg–Landau energy,
which improves related results in [30] and [42].

PROPOSITION 15 (Kurzke–Spirn [28]). Suppose that
∥∥J (u)− πδ0

∥∥
Ẇ−1,1(Bσ )

6 σ

4

and
∫

Bσ
eε(u) 6 π log σ

ε
+ K0. Then∣∣∣∣∣∣∣

1
2

∫
Bσ

( ∣∣∂x1 u
∣∣2 (

∂x1 u, ∂x2 u
)(

∂x1 u, ∂x2 u
) ∣∣∂x2 u

∣∣2
)
−


π

2
log

σ

ε
0

0
π

2
log

σ

ε


∣∣∣∣∣∣∣ 6

√
K1 log

σ

ε
,

(63)
where K1 = C(C + K0)eK0/π and C is a universal constant.

We apply this equipartitioning result to the evolution identity for the energy and
deduce a rate of convergence for the kinetic energy.
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Proof of Theorem 14. To prove this estimate, we first use the hypotheses to
extract better vortex positions. We then use the differential identity (31) along
with a special test function to prove the kinetic energy bounds.

(1) We first prove a pair of crude bounds that enable us to use Theorem 11 in
the previous section. From (38), we find that |W (a(t))| 6 C

(
n3
+

n2

ρ2
?

)
. Therefore,

for any 0 6 t 6 T , we have Eε(u(t)) = Dε(t)+Wε(a(t)) . 1+n3
+

n2

ρ2
?
+n|log ε|.

From (57), we have the very crude bounds n, ρ−1
? . |log ε|; and hence, Eε(u(t)).

|log ε|4. As n > 1, we may additionally assume that Eε(u(t)) > 1 for all times.
We easily see that

n5

ρα
Eε(u(t))+

n10

ρ2
α

√
Eε(u(t)) . |log ε|13 6

1
ε
. (64)

Set
σ =

ρ?

2C?n4
.

Then, by (57) and (64), and for each t1 6 t 6 t2, we can use Proposition 10
and Theorem 11. In particular, for each t1 6 t 6 t2, there exists a ξ(t) = (ξ1(t),
. . . , ξn(t)) such that (58) holds with |ξ j −a j | 6 σ for each j = 1, . . . , n. By (50),
B2σ (a j(s))∩B2σ (ak(s))= ∅ for all s ∈ [0, t] unless j = k, and B2σ (a j(s))∩∂Ω =
∅ for all j .

Next, we prove an estimate on the kinetic energy. Conservation of energy
implies that∫ t

0

∫
Ω

∣∣∂t u
∣∣2

|log ε|
= Eε(u0)− Eε(u(t)) = D(a(0))+Wε(a0)−Wε(a(t))− D(a(t))

= D(a(0))+W (a0)−W (a(t))− D(a(t)).

By a similar argument as above, and using n . ρ−2
? , we find that∫ t

0

∫
Ω

∣∣∂t u
∣∣2

π |log ε|
.

n2

ρ2
?

. (65)

(2) We now make the following claim. Let χ ∈ C∞c (R2) be a function such that
χ > 0, χ ≡ 1 on Bσ (0), χ ≡ 0 in R2

\ B2σ (0), and |Dkχ | 6 Cσ−k for k = 1, 2
for some constant C . Then∣∣∣∣ 1

|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j(t)) ȧ j(t) · (∂t u,∇u)+ π
∫ t2

t1

n∑
j=1

|ȧ j(t)|2
∣∣∣∣

.
n3T
ρ3
?

sup
t∈[t1,t2]

n∑
j=1

∣∣ξ j(t)− a j(t)
∣∣+ n10T

ρ5
? |log ε|

+
n3T

ρ3
? |log ε|

1
2
. (66)
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For any test function φ ∈ C2([0, T ] ×Ω) with compact support in Ω and any
0 6 t1 6 t2 6 T , we have∫ t2

t1

∫
Ω

∂t

(
φ

eε(u)
|log ε|

)
−

∫ t2

t1

∫
Ω

(∂tφ)
eε(u)
|log ε|

= −
1
|log ε|

∫ t2

t1

∫
Ω

φ
|∂t u|2

|log ε|
−

1
|log ε|

∫ t2

t1

∫
Ω

∇φ · (∂t u,∇u), (67)

as is easily seen by multiplying (31) by 1
|log ε| and integrating by parts.

We now follow [25], and set

φ(t, x) =
n∑

j=1

χ(x − a j(t)) ȧ j(t) · (x − a j(t)).

Then we calculate, dropping the t-dependence of a,

∇φ(t, x) =
n∑

j=1

(ȧ j · (x − a j))∇χ(x − a j)+ ȧ j χ(x − a j),

∂tφ(t, x) =
n∑

j=1

−ȧ j · ∇χ(x − a j) ȧ j · (x − a j)

+ χ(x − a j)
(
ä j · (x − a j)− ȧ j · ȧ j

)
,

∇∂tφ(t, x) =
n∑

j=1

−ȧ j · ∇
2χ(x − a j) ȧ j · (x − a j)− ȧ j · ∇χ(x − a j) ȧ j

+∇χ(x − a j)
(
ä j · (x − a j)− |ȧ j |

2)
+ χ(x − a j) ä j .

We first note that ȧ j = −
1
π
∇a j W , which implies that ä j =

1
π2∇ak W∇a j ,ak W .

Therefore,

sup
j

∥∥ȧ j

∥∥
L∞T

.
n
ρ?
,

sup
j

∥∥ä j

∥∥
L∞T

.
n3

ρ3
?

,

and these estimates imply the following bounds:∥∥φ∥∥L∞T L∞Ω
. nσ sup

j

∥∥ȧ j

∥∥
L∞T

.
1
n2
,

∥∥∇φ∥∥L∞T L∞Ω
. n sup

j

∥∥ȧ j

∥∥
L∞T

.
n2

ρ?
,

∥∥∇∂tφ
∥∥

L∞T L∞Ω
.

n
σ

sup
j

∥∥ȧ j

∥∥2

L∞T
+ n sup

j

∥∥ä j

∥∥
L∞T

.
n7

ρ3
?

.
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Now, we analyze the terms in (67) one by one. We have, by (58),∣∣∣∣∫ t2

t1

∫
Ω

∂t

(
φ

eε(u)
|log ε|

)
−

[∫
Ω

φ(t2, ·)

(
π
∑

δξ j (t2)

)
− φ(t1, ·)

(
π
∑

δξ j (t1)

)]∣∣∣∣
6 2 sup

t∈[t1,t2]

∣∣∣∣∫
Ω

φ(t, ·)
(

eε(u(t, ·))
|log ε|

− π
∑

δξ j (t)

)∣∣∣∣
.
∥∥∇φ∥∥L∞T L∞Ω

sup
t∈[t1,t2]

∥∥∥∥eε(u(t))
|log ε|

− π

n∑
j=1

δξ j (t)

∥∥∥∥
Ẇ−1,1

.
n4

ρ3
? |log ε|

.

On the other hand,∣∣∣∣ n∑
j=1

ȧ j(t2) ·
(
ξ j(t2)− a j(t2)

)
− ȧ j(t1) ·

(
ξ j(t1)− a j(t1)

)∣∣∣∣
.

n
ρ?

sup
t∈[t1,t2]

n∑
j=1

∣∣ξ j(t)− a j(t)
∣∣.

Therefore,∣∣∣∣∫ t2

t1

∫
Ω

∂t

(
φ

eε(u)
|log ε|

)∣∣∣∣ . n
ρ?

sup
t∈[t1,t2]

n∑
j=1

∣∣ξ j(t)− a j(t)
∣∣+ n4

ρ3
? |log ε|

. (68)

For the second term on the left-hand side of (67),∣∣∣∣∫ t2

t1

∫
Ω

∂tφ
eε(u)
|log ε|

−

∫ t2

t1

∫
Ω

∂tφ

n∑
j=1

πδξ(t)

∣∣∣∣
6 T

∥∥∇∂tφ
∥∥

L∞T L∞Ω
sup

t∈[t1,t2]

∥∥∥∥eε(u(t, ·))
|log ε|

−

n∑
j=1

πδξ(t)

∥∥∥∥
Ẇ−1,1

.
n10T

ρ5
? |log ε|

and ∣∣∣∣∫ t2

t1

∫
Ω

∂tφ

n∑
j=1

πδξ j + π

n∑
j=1

∫ t2

t1

|ȧ j |
2

∣∣∣∣ = π ∣∣∣∣ n∑
j=1

∫ t2

t1

ä j · (ξ j − a j)

∣∣∣∣
.

n3T
ρ3
?

sup
t∈[t1,t2]

n∑
j=1

∣∣ξ j(t)− a j(t)
∣∣.
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Thus ∣∣∣∣∫ t2

t1

∫
Ω

∂tφ
eε(u)
|log ε|

+ π

n∑
j=1

∫ t2

t1

|ȧ j |
2

∣∣∣∣
.

n3T
ρ3
?

sup
t∈[t1,t2]

n∑
j=1

∣∣ξ j(t)− a j(t)
∣∣+ n10T

ρ5
? |log ε|

.

(69)

Note that the previous equality contains the second term of the left-hand side
of (66).

For the first term on the right-hand side of (67), we use (65), and get

1
|log ε|

∫ t2

t1

∫
Ω

φ
|∂t u|2

|log ε|
.
∥∥φ∥∥L∞T

n2

|log ε|ρ2
?

.
1

ρ2
? |log ε|

. (70)

Finally, for the second term on the right-hand side of (67), we have

1
|log ε|

∫ t2

t1

∫
Ω

∇φ · (∂t u,∇u)

=

n∑
j=1

1
|log ε|

∫ t2

t1

∫
B2σ(a j (t))

∇χ(x − a j) · (∂t u,∇u)ȧ j · (x − a j)

+

n∑
j=1

1
|log ε|

∫ t2

t1

∫
Ω

χ(x − a j)ȧ j · (∂t u,∇u).

(71)

We note that the second term on the right-hand side of (71) is precisely the first
term on the left-hand side of (66). We estimate the other term. Using the Cauchy–
Schwarz inequality,

n∑
j=1

1
|log ε|

∣∣∣∣∫ t2

t1

∫
B2σ(a j (t))

∇χ(x − a j) · (∂t u,∇u) ȧ j · (x − a j)

∣∣∣∣
6

σ

|log ε|
1
2

sup
j

∥∥ȧ j

∥∥
L∞T

∥∥∇χ(x − a j)
∥∥

L∞T L∞Ω

n∑
j=1

(∫ t2

t1

∫
B2σ (a j (t))\Bσ (a j (t))

|∂t u|2

|log ε|

) 1
2
(∫ t2

t1

∫
B2σ (a j (t))\Bσ (a j (t))

|∇u|2
) 1

2

.
n

ρ?|log ε|
1
2

[∫ t2

t1

∫
Ω

|∂t u|2

|log ε|
+

∫ t2

t1

∫
Ωσ (a j (t))

|∇u|2
]

.
n

ρ?|log ε|
1
2

[
n2

ρ2
?

+
n2

ρ2
?

|t2 − t1|

]
.

n3T

ρ3
? |log ε|

1
2
.
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(3) We now study the momentum term on the left-hand side of (66). From the
Cauchy–Schwarz inequality,

1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j) ȧ j · (∂t u,∇u)

6

(
1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)|∂t u|2
) 1

2

×

(
1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)(ȧ j ⊗ ȧ j) : (∇u ⊗∇u)
) 1

2

,

where (b ⊗ b)i j = bi b j for b ∈ R2 and
(
∇u ⊗∇u

)
i j =

(
∂i u, ∂ j u

)
for u ∈ C. For

any ȧ j ∈ R2 and χ as above, we claim that∣∣∣∣ 1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)(ȧ j ⊗ ȧ j) : (∇u ⊗∇u)−
∫ t2

t1

n∑
j=1

π |ȧ j |
2

∣∣∣∣
.

n3T

ρ2
? |log ε|

1
2
.

(72)

Indeed, for any time t1 6 t 6 t2, we find that∣∣∣∣ 1
|log ε|

∫
Ω

n∑
j=1

χ(x − a j)ȧ j ⊗ ȧ j : ∇u ⊗∇u −
n∑

j=1

π
∣∣ȧ j

∣∣2∣∣∣∣
6

∣∣∣∣∫
Ω

n∑
j=1

χ(x − a j)ȧ j ⊗ ȧ j :
∇u ⊗∇u
|log ε|

−

n∑
j=1

∫
Bσ (ξ j (t))

|ȧx
j |

2 |∂x u|2

log σ

ε

+ |ȧ y
j |

2 |∂yu|2

log σ

ε

∣∣∣∣
+

n∑
j=1

∣∣∣∣(∫
Bσ (ξ j (t))

|ȧx
j |

2 |∂x u|2

log σ

ε

+ |ȧ y
j |

2 |∂yu|2

log σ

ε

)
− π

∣∣ȧ j

∣∣2∣∣∣∣
= I1 + I2.

First, we analyze I1. From (54) and D(a(t))6 1, Proposition 15 is applicable with
K0 . 1, since |

∫
Bσ (α j )

eε(u) − π log σ

ε
| 6 DBσ (α j ) + γ . Choosing σ = ρ? � ε,

then (63) implies that

I1 6
2
|log ε|

n∑
j=1

∫
B2σ (a j )

χ(x − a j)

∣∣∣∣ȧx
j ȧ

y
j

(
∂x u, ∂yu

)∣∣∣∣
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+

n∑
j=1

∫
B2σ (a j )\Bσ (ξ j )

χ(x − a j)

[
|ȧx

j |
2
|∂x u|2

|log ε|
+
|ȧ y

j |
2
|∂yu|2

|log ε|

]

+

∣∣∣∣1− log 1
ε

log σ

ε

∣∣∣∣ n∑
j=1

∫
Bσ (ξ j )

[
|ȧx

j |
2
|∂x u|2

|log ε|
+
|ȧ y

j |
2
|∂yu|2

|log ε|

]

.
n
|log ε|

sup
j

∥∥ȧ j

∥∥2

L∞T

√
log

σ

ε
+

sup j

∥∥ȧ j

∥∥2

L∞T

|log ε|

∫ t2

t1

∫
Ωσ (a(t))

∣∣∇u
∣∣2

+
log 1

σ

|log ε|
sup

j

∥∥ȧ j

∥∥2

L∞T

n∑
j=1

∫
Bσ (ξ j )

∣∣∇u
∣∣2

log σ

ε

.

[
n3

ρ2
? |log ε|

1
2
+

n4

ρ4
? |log ε|

+
n3 log 1

σ

ρ2
? |log ε|

]
.

Next, we look at I2. Again from (54) and (63), and since σ � ε,

I2 .
n∑

j=1

|ȧ j |
2

(
log

σ

ε

)− 1
2

.
n3

ρ2
? |log ε|

1
2
.

Comparing the terms from I1 and I2 results in estimate (72). Finally, we combine
(67) with (68)–(72), which yields (66).

(4) Using (66) and assumptions (57), we have∣∣∣∣π ∫ t2

t1

n∑
j=1

∣∣ȧ j

∣∣2 − F1

∣∣∣∣
6

(∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)
|∂t u|2

|log ε|

) 1
2
(
π

∫ t2

t1

n∑
j=1

|ȧ j |
2
+ F2

) 1
2

,

where

F1 = C
n3T

ρ3
? |log ε|

1
2
+ C

n3T
ρ3
?

sup
s∈[t1,t2]

n∑
j

∣∣ξ j(s)− a j(s)
∣∣

F2 = C
n3T

ρ2
? |log ε|

1
2
.

We square the previous inequality, obtaining by division(
π
∫ t2

t1

∑n
j=1 |ȧ j |

2
− F1

)2

π
∫ t2

t1

∑n
j=1 |ȧ j |

2 + F2
6

1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)|∂t u|2.
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Setting K = π
∫ t2

t1

∑n
j=1 |ȧ j |

2, we have, using

(K − F1)
2

K + F2
= K + F2 − 2(F1 + F2)+

(F1 + F2)
2

K + F2
> K − F1 − 2F2,

that

1
|log ε|

∫ t2

t1

∫
Ω

n∑
j=1

χ(x − a j)|∂t u|2 > π

∫ t2

t1

n∑
j=1

|ȧ j |
2
− C F1 − C F2, (73)

and so (59) follows, since F1 & F2.
(5) We next will show that u(t) is well approximated in certain ways by the

canonical harmonic map u?(t) := u?(·; ξ(t)) for t 6 t2. To do this, we need to
estimate the surplus energy D(ξ(t))with respect to the points ξ(t) found in Step 1
above. Assuming that D(a(0))6 (n3T/ρ3

? |log ε|
1
2 ), then by (33) and (59) we have

D(ξ(t)) = D(a(t))+W (a(t), d)−W (ξ(t), d)

. Aε

[
sup

s∈[0,t]

n∑
j=1

∣∣ξ j(s)− a j(s)
∣∣+ |log ε|−

1
2

]

+

(
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)|
) (

sup
j

sup
|y−a(t)|6|ξ(t)−a(t)|

|∇y j W (y)|
)
,

where Aε =
n3T
ρ3
?

. If y ∈Ωn is such that |y−a(t)| 6 |ξ(t)−a(t)|, then ρy >
1
2ρa(t)

and

D(ξ(t)) 6 CAε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
, (74)

which implies (60). Furthermore, we have∫
Ωρ? (ξ(t))

eε(|u(t)|)+
1
4

∣∣∣∣ j (u(t))
|u(t)|

− j (u?(t))
∣∣∣∣2

6 CAε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
+ C

(
n5

ρ?

(
ε

n5

ρ?
+ εEε(u)

)) 1
2

6 CAε

[
sup

s∈[0,t]

n∑
j=1

|ξ j(s)− a j(s)| + |log ε|−
1
2

]
for all t ∈ [0, t2], where we used Proposition 6 and (74) in the first inequality.
Estimate (62) follows from (61) by directly following the argument in Step 3 of
the proof of Theorem 2 in [23].
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6. Proof of Theorem 1

To prove Theorem 1, we will use the energy identity (32) to connect PDE
and ODE dynamics. To control the errors, we apply the Gronwall inequality and
continuity arguments that show the theorem is true for longer and longer times. In
order to apply Gronwall’s inequality, we use time averaging to obtain improved
estimates.

6.1. Assumptions and initial estimates. We recall the following assump-
tions:

number of vortices n 6 |log ε|
1

200 , (75)

minimal intervortex distance ρ? > |log ε|−
1

100 , (76)
total time scale T 6 |log|log ε||, (77)

initial excess energy D(a(0)) 6 |log ε|−
1
2 . (78)

Note that the time scale, T , serves as a coarse bound for the eventual time
frame for which we have the vortex motion law and will be used to simplify
calculations. Additionally, we need the following small quantities:

time averaging scale δε = |log ε|−
1
4 , (79)

resolution of vortex location Dε = |log ε|−
1
4 , (80)

and the following composites:

Jacobian localization error sε := Cε
[

n5

ρ?
+ Eε(u0)

]
,

energy localization error tε :=
C
|log ε|

[
n log

n4

ρ?
+W (a(0))

]
.

(81)

Since the energy is concentrating at the points ξ j(t) and the ODE gives us
vortex positions a j(t), our main objective is to estimate and control

∑
j |ξ j(t) −

a j(t)|. This is a challenging quantity to work with directly, so, following [23], we
define a similar quantity that is differentiable and has very similar properties. We
set

η(t) :=
n∑

j=1

|η j(t)| :=
n∑

j=1

∣∣∣∣∫
Ω

eε(u)
|log ε|

Φ j

∣∣∣∣, (82)

where
Φ j(x, t) = ϕ(x − a j(t)), ϕ(x) = xχρ?(x),

and χρ?(x) = χ(
x
ρ?
) for a fixed χ ∈ C∞0 (R2) satisfying χ(x) =

{
1 for |x | 6 1
0 for |x | > 2 .
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TheΦ j are supported on B2ρ?(a j(t)), so that
{
suppΦ j(x, t)

}
are pairwise disjoint

when ρa(t) > ρ?, and in particular for all 0 6 t 6 τ1. Note that, in [23], the
definition is essentially the same, but it uses the Jacobian instead of the energy
density.

We recall and define a series of time intervals on which our function u is well
behaved in different senses:

τ0 = inf
{
t > 0 such that ρa(t) 6 ρ?

}
,

τmax = min
{
τ0,C

√
log |log ε|

ρ4
?

n3

}
,

τ1 = sup
t

{
0 6 t 6 τmax such that ‖J (u(s))−

n∑
i=1

πδai (s)‖Ẇ−1,1 6 Dε (83)

and D(a(s)) 6 1 for all 0 6 s 6 t
}
,

τ2 = sup
t

{
0 6 t 6 τ1 such that η(s) 6

1
2
Dε for all 0 6 s 6 t

}
.

In Section 6.4, we will show that τ1 = τ2 = τmax .
The definition of τ1 implies that

ρa(t) > ρ? > |log ε|−
1

100 and
∥∥∥∥J (u(t))−

n∑
i=1

πdiδai (t)

∥∥∥∥
Ẇ−1,1

6 Dε (84)

for all t ∈ [0, τ1]. From (75) and (84), we have

‖J (u(t))−
∑

πδai (t)‖Ẇ−1,1 6 |log ε|−
1
4 6

1
8C?

|log ε|−
7

200 6
ρa(t)

8C?n5
,

where C? is the constant found in Proposition 10. Therefore, Proposition 10
and Theorem 11 hold, so there exists ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ Ωn∗ such that
|ξi − ai | 6

ρa(t)

4 for all i , and∥∥∥∥J (u)(s)−
n∑

i=1

πδξi (s)

∥∥∥∥
Ẇ−1,1

6 sε,∥∥∥∥eε(u)(s)
|log ε|

−

n∑
i=1

πδξi (s)

∥∥∥∥
Ẇ−1,1

6 tε.

(85)

Given our assumptions and composite quantities, we collect a few useful
estimates.
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LEMMA 16. Assuming (75)–(78), then, for 0 6 t 6 τ1,

W (a(t)) . |log ε|
3

100 , (86)

Eε(u(t)) . |log ε|1+
1

200 , (87)

sε . ε
9
10 , (88)

tε . |log ε|−
97
100 , (89)

and, for all 0 6 s 6 t 6 τ1,∫ t

s

∫
Ω

∣∣∂t u
∣∣2

|log ε|
. 1+ |log ε|

7
200 |t − s|. (90)

Proof. By (38), since ρa(t) > ρ?, (86) follows from (75) and (76). Next, note that

E(u(t)) = Wε(a(t))+ D(a(t)) = n
(
π |log ε| + γ

)
+W (a(t))+ D(a(t))

. |log ε|1+
1

200

from (75), (86), and the fact that D(a(t)) 6 1 for 0 6 t 6 τ1. As a result, (88)
and (89) follow from (75), (76), (86), and (87).

Finally, Equation (90) follows from (6) and (10):∫ t

s

∫
Ω

∣∣∂t u
∣∣2

|log ε|
= D(a(s))− D(a(t))+

∫ t

s
|ȧ|2 . 1+ |t − s|

n3

ρ2
?

by the hypotheses on W (a).

We now show that η is a good measure for
∑

j |ξ j − a j | and similar quantities.

LEMMA 17. If 0 6 t 6 τ1, then∣∣∣∣η(t)− n∑
i=1

π |ξi(t)− ai(t)|
∣∣∣∣ . tε, (91)

∣∣∣∣η(t)− ∥∥∥∥eε(u(t))
|log ε|

−

n∑
i=1

πδai (t)

∥∥∥∥
Ẇ−1,1

∣∣∣∣ . tε, (92)

∣∣∣∣η(t)− ∥∥∥∥J (u(t))−
n∑

i=1

πδai (t)

∥∥∥∥
Ẇ−1,1

∣∣∣∣ . tε, (93)

and
η(t) 6 2Dε. (94)
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Proof. First, note that, in view of the definition of τ1,

π
∑

j

|ξ j(t)− a j(t)| =
∥∥∥∥ n∑

i=1

π(δξi (t) − δai (t))

∥∥∥∥
Ẇ−1,1

. |log ε|−
1
4 + tε 6

ρ?

4

(95)

when ε is sufficiently small, for all t ∈ [0, τ1]. From the definition ofΦ j , it follows
that ξ j(t)−a j(t) = Φ j(ξ j(t), t) for all such t . Therefore, there exists a unit vector
v j(t) such that |ξ j(t)− a j(t)| = v j ·

(
2Φ j(ξ j(t))

)
; hence,

π
∑

j

|ξ j(t)− a j(t)|

=

∫ (
π
∑

δξi (t)

)(∑
v j ·Φ j(t)

)
6 η(t)+

∫ (
π
∑

δξi (t) −
eε(u(t))
|log ε|

)(∑
v j ·Φ j(t)

)
6 η(t)+

∥∥∥∥eε(u(t))
|log ε|

− π
∑

δξi (t)

∥∥∥∥
Ẇ−1,1

∥∥∥∥∑
j

v j ·Φ j(t)
∥∥∥∥

W 1,∞

6 η(t)+ Ctε for all t ∈ [0, τ1].

A similar argument shows that, for such t ,

η(t) 6 π
∑
|ξi(t)− ai(t)| + Ctε,

which proves (91).
Again, following the argument in [23], we use the triangle inequality and the

Ẇ−1,1 norm to get∥∥∥∥eε(u(t))
|log ε|

−

n∑
i=1

πδai (t)

∥∥∥∥
Ẇ−1,1

6

∥∥∥∥eε(u(t))
|log ε|

−

n∑
i=1

πδξi (t)

∥∥∥∥
Ẇ−1,1

+

∥∥∥∥ n∑
i=1

π(δξi (t) − δai (t))

∥∥∥∥
Ẇ−1,1

6 tε + π
∑
|ξi(t)− ai(t)| 6 Ctε + 2η(t)

for all t ∈ [0, τ1]. In the same way, one finds that

η(t) 6 Ctε +
∥∥∥∥eε(u(t))
|log ε|

−

n∑
i=1

πδai (t)

∥∥∥∥
Ẇ−1,1
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for all t ∈ [0, τ1], which proves (92). A similar argument establishes (93). Finally,
by the triangle inequality, (83), and (93), we arrive at (94), since tε � Dε.

6.2. Growth of the position error. In the following, we show that |η̇| .
Aε
√
η + Bε for Bε � 1, which is not in itself sufficient to prove that η � 1

for long times.

PROPOSITION 18. For t ∈ [0, τ1],

|η̇(t)| .
Aε

ρ?

(
sup

s∈[0,t]
η(s)+ |log ε|−

1
2

)
+ 2

∫
∂2

xk x`Φ j

(
j (u)
|u|
− j (u?)

)
k

(
j (u?)

)
`

(96)

−

∫
∂2

xk xk
Φ j

(
j (u)
|u|
− j (u?)

)
`

(
j (u?)

)
`
+

∫ ∣∣∂t u(t)
∣∣2

|log ε|2

.
Aε

ρ?

(
sup

s∈[0,t]
η(s)+ |log ε|−

1
2

)
+

n
3
2 A

1
2
ε

ρ?

√
sup

s∈[0,t]
η(s)+ |log ε|−

1
2 (97)

+

∫ ∣∣∂t u(t)
∣∣2

|log ε|2
,

where

Aε :=
n3T
ρ3
?

. |log ε|
9

200 |log|log ε||

is the constant defined in Theorem 14.

To prove Proposition 18, we first compute the time derivative of η(t).

LEMMA 19. Let u be a solution to (1). Then, for 0 6 t 6 τ1 and j = 1, . . . , n,

η̇ j = T j,1 + T j,2 + T j,3 + T j,4 + T j,5 + T j,6 + T j,7, (98)

where

T j,1 = ∇ϕ(ξ j − a j) ·
(
∇ j W (ξ)−∇ j W (a)

)
T j,2 = −

∫ (
eε(u)
|log ε|

−

n∑
i=1

πδξi

)(
−∇ j W (a)

)
· ∇ϕ(x − a j)

T j,3 =

∫
∂2

xk x`Φ j
(
∂x` |u|, ∂xk |u|

)
− ∂2

x`x`Φ j eε(|u|)
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T j,4 =

∫
∂2

xk x`Φ j

[(
j (u)
|u|
− j (u?)

)
`

(
j (u)
|u|
− j (u?)

)
k

−
δk`

2

∣∣∣∣ j (u)
|u|
− j (u?)

∣∣∣∣2]
T j,5 = 2

∫
∂2

xk x`Φ j

(
j (u)
|u|
− j (u?)

)
k

(
j (u?)

)
`

T j,6 = −

∫
∂2

xk xk
Φ j

(
j (u)
|u|
− j (u?)

)
`

(
j (u?)

)
`

T j,7 = −

∫
Φ j

∣∣∂t u
∣∣2

|log ε|2

and j (u?) = j (u?(ξ, d)).

Proof. Differentiating η j , we obtain

d
dt
η j =

∫
eε(u)
|log ε|

d
dt
Φ j +

∫
Φ j

d
dt

eε(u)
|log ε|

.

Since d
dtΦ j(x, t) = d

dt ϕ(x − a j) = (−ȧ j) · ∇ϕ(x − a j), we can use the ODE and
the fact that Φ j(ξi(t)) = 0 for i 6= j to write∫

eε(u)
|log ε|

d
dt
Φ j =

∫
eε(u)
|log ε|

(−ȧ j) · ∇ϕ(x − a j)

=
1
π
∇ j W (a) · ∇ϕ(ξ j − a j)

+
1
π

∫ (
eε(u)
|log ε|

−

n∑
i=1

πδξi

)(
−∇ j W (a)

)
· ∇ϕ(x − a j).

Next, from the evolution identity for the energy (32), the representation ∇u =(
∇|u| + i j (u)

|u|

)
u
|u| , and A2

− B2
= |A − B|2 + 2(A − B) · B, we find that

∫
Φ j

d
dt

eε(u)
|log ε|

=

∫
∂2

xk x`Φ j

[(
∂x`u, ∂xk u

)
−
δk`

2

∣∣∇u
∣∣2]− ∂2

x`x`Φ j

(
1− |u|2

)2

4ε2

−

∫
Φ j

∣∣∂t u
∣∣2

|log ε|2

=

∫
∂2

xk x`Φ j
(
∂x` |u|, ∂xk |u|

)
− ∂2

x`x`Φ j eε(|u|)−
∫
Φ j

∣∣∂t u
∣∣2

|log ε|2

+

∫
∂2

xk x`Φ j

[(
j (u)
|u|
− j (u?)

)
`

(
j (u)
|u|
− j (u?)

)
k
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−
δk`

2

∣∣∣∣ j (u)
|u|
− j (u?)

∣∣∣∣2]
+

∫
∂2

xk x`Φ j

(
j (u)
|u|
− j (u?)

)
`

(
j (u?)

)
k

+

∫
∂2

xk x`Φ j

(
j (u)
|u|
− j (u?)

)
k

(
j (u?)

)
`

−

∫
∂2

x`x`Φ j

(
j (u)
|u|
− j (u?)

)
`

(
j (u?)

)
`

−

n∑
k=1

∂xkΦ j(ξ j)
(
∇ξ j W (ξ)

)
k,

where we have used Lemma 4 to write ∇W by means of j (u?).

We estimate η̇ by separately considering the contributions from the different
terms isolated in Lemma 19, leading to the following proof.

proof of Proposition 18. Note from Lemma 19 and the definition (82) of η that

η̇ = T1 + · · · + T7, where Tk =

n∑
j=1

η j

|η j |
· T j,k .

We estimate these terms in turn.
First, note that ∂kϕ`(ξ j − a j) = δk` for 0 6 t 6 τ1, by the definition of φ and

(95). Thus, in view of (91),

|T1| 6
∑

j

|T j,1| 6 C(η + tε)
∑

j

|∇ j W (ξ)−∇ j W (a)|.

And arguing as in the proof of (39), we see that

|∇ j W (ξ)−∇ j W (a)| 6
n∑

k=1

|ξk(t)− ak(t)|(sup
k

sup
|y−a(t)|6|ξ(t)−a(t)|

|∇k∇ j W (y)|)

6 (η(t)+ Ctε)C
n
ρ2
?

,

using (91) again, as well as bounds on ∇2W from (37). Thus,

|T1| 6 C
n2

ρ2
?

(η(t)+ Ctε). (99)
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Next,

|T2| =

∣∣∣∣∫ ( eε(u)
|log ε|

−

n∑
i=1

πδξi

)(∑
j

∇ j W (a) · ∇
(
Φ j ·

η j

|η j |

))∣∣∣∣
6

∥∥∥∥ eε(u)
|log ε|

−

∑
i

πδξi

∥∥∥∥
Ẇ−1,1

∥∥∥∥∇∑
j

∇ j W (a) · ∇
(
Φ j ·

η j

|η j |

)∥∥∥∥
L∞
.

Since the Φ j have disjoint support,∥∥∥∥∇∑
j

∇ j W (a) · ∇
(
Φ j ·

η j

|η j |

)∥∥∥∥
L∞

6 sup
j
|∇ j W (a)| ‖∇2Φ j‖∞ 6 C

n
ρ2
?

.

We conclude from (85) and the above that

|T2| 6 Ctε
n
ρ2
?

. (100)

Continuing, we use the fact that ∇2Φ j vanishes in Bρ?(a j), together with
Theorem 14, to find that∣∣T3

∣∣ 6 ∥∥∥∥∑
j

η j

|η j |
· ∇

2Φ j

∥∥∥∥
L∞

∫
Ωρ? (a)

∣∣∇|u|∣∣2
.

Aε

ρ?

[
sup

s∈[0,t]
η(s)+ |log ε|−

1
2

]
.

(101)

Exactly the same considerations show that

∣∣T4

∣∣ . Aε

ρ?

[
sup

s∈[0,t]
η(s)+ |log ε|−

1
2

]
. (102)

Next,∣∣T5

∣∣ 6 ∥∥∥∥∑
j

η j

|η j |
· ∇

2Φ j

∥∥∥∥
L∞

∥∥∥∥ j (u)
|u|
− j (u?)

∥∥∥∥
L2(Ωρ? )

‖ j (u?)‖L2(∪ j supp∇2Φ j ).

Using (36), one can easily check that ‖ j (u?)‖L2(∪ j supp∇2Φ j ) 6
Cn
ρ?
(Cnρ2

? )
1
2 , and

hence we conclude that

∣∣T5

∣∣ . n
3
2 A

1
2
ε

ρ?

√
sup

s∈[0,t]
η(s)+ |log ε|−

1
2 . (103)
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Exactly the same argument shows that
∣∣T6

∣∣ . n
3
2 A

1
2
ε

ρ?

√
sups∈[0,t] η(s)+ |log ε|−

1
2 .

Finally, since |Φ j(x)| = |x − a j ||χ(
x−a j

ρ?
)| 6 2ρ?, then

|T7| .
∫
Ω

|∂t u|2

|log ε|2
. (104)

Combining (99)–(104) yields (96) and (97).

The result of Proposition 18 is not good enough to get any very strong result
from Gronwall’s inequality, but it still implies useful bounds that allow us to
compare η to its time averages.

We define the time average of a function h as〈
h
〉
δε
(t) =

1
δε

∫ t

t−δε

h(s)

for any t > δε.

COROLLARY 20. We have, for all 0 6 s 6 t 6 τ2,∣∣η(t)− η(s)∣∣ . |t − s||log ε|−
17

200 |log|log ε||
1
2 + |log ε|−

97
100 |log|log ε||. (105)

Furthermore, if 0 6 t − δε 6 s 6 t 6 τ2, then

|η(s)−
〈
η(t)

〉
δε
| . |log ε|−

67
200 |log|log ε||

1
2 . (106)

Proof. From Proposition 18, we have that

∣∣η̇(t)∣∣ . n
3
2 A

1
2
ε

ρ?

√
Dε + |log ε|−

1
2 +

∫
|∂t u|2

|log ε|2

. |log ε|−
17
200 |log|log ε||

1
2 +

∫
|∂t u|2

|log ε|2
.

Therefore, for any 0 6 s 6 t 6 τ2, we have∣∣η(t)− η(s)∣∣ . |t − s||log ε|−
17
200 |log|log ε||

1
2 +

∫ t

s

∫
|∂t u|2

|log ε|2
,

and by (90) estimate (105) follows. Bound (106) follows from a similar
argument.

6.3. Improved supercurrent bounds by time averaging. In this subsection,
we prove estimates of T1 − T7 after averaging in time. As in [23], a simple bound
using the Cauchy–Schwarz inequality and the Gamma convergence estimates
only results in bounds on T5 and T6 that involve

√
|η|. To remedy this problem, we
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follow the idea of [23] and directly establish bounds on j (u) − j (u?) via Hodge
decomposition and time averaging. Our result is the following.

PROPOSITION 21. Suppose that τ2 > δε. Then, for all t ∈ [δε, τ2] and j ∈ {1,
. . . , 7},

|
〈
T j
〉
δε
(t)| .

n3T
ρ4
?

sup
s∈[δε,t]

〈
η
〉
δε
(s)+ |log ε|−

3
10 . (107)

Proof. We first consider T1–T4 and T7, since we can directly use (99)–(102) and
(104) of Proposition 18.

(1) Since η is continuous, we have, for some c ∈ [δε, t],

Aε

ρ?
sup

s∈[δε,t]
η(s) =

n3T
ρ4
?

η(c)

.
n3T
ρ4
?

[〈
η
〉
δε
(c)+ C |log ε|−

67
200 |log|log ε||

1
2

]
.

n3T
ρ4
?

[
sup

s∈[δε,t]

〈
η
〉
δε
(s)+ C |log ε|−

67
200 |log|log ε||

1
2

]
,

and, since n3T
ρ4
?
|log ε|−

67
200 |log|log ε||

1
2 6 |log ε|−

3
10 , the result follows.

Next, we can estimate
〈
T7
〉
δε

by (65), since〈∫
|∂t u|2

|log ε|2

〉
δε

1
δε|log ε|

∫ t

0

∫ ∣∣∂t u
∣∣2

|log ε|
.

n2

ρ2
?δε|log ε|

. |log ε|−
3

10 .

(2) Now, we turn to the challenging T5 and T6 terms. For simplicity, we write

T5 =

∫
Ω

ζk
( j (u)
|u|
− j (u?)

)
k,

where

ζk :=
∑

j

∂xk xm

(
η j

|η j |
·Φ j) jm(u?

)
, k = 1, 2, (108)

and jm denotes the m component of j (u?), m = 1, 2. Here, u?(x, t) = u?(x; ξ(t)),
as usual.

From the definitions and (36), one finds that |ζ | 6 C n
ρ2
?

and | supp ζ | 6 Cnρ2
? .

It follows that
‖ζ‖Lq (Ω) . n1+ 1

q ρ
2
q−2
? (109)

for 1 6 q 6∞.
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The following proof is quite similar to the proof found in Proposition 1 in [23];
however, we include it since the bounds are different, due to a different differential
identity for div j (u(t)). We perform a Hodge decomposition

j (u)− j (u?) = ∇ f1 +∇
⊥ f2 (110)

with boundary conditions either

f1 = 0 and ∂ν f2 = 0 on ∂Ω, (111)

or
∂ν f1 = 0 and f2 = 0 on ∂Ω, (112)

depending whether we are dealing with Dirichlet or Neumann boundary
conditions. And so we examine

∆ f1 = div j (u)

−∆ f2 = 2
[

J (u)−
∑

πδξ j

]
with (111) or (112).

Since ∇ f1 is small only after time averaging, we write our estimate as〈
T5
〉
δε
=

〈∫
ζ ·

j (u)
|u|

(1− |u|)
〉
δε

+

〈∫
ζ · curl f2

〉
δε

+

〈∫
ζ · ∇ f1

〉
δε

=

〈∫
ζ ·

j (u)
|u|

(1− |u|)
〉
δε

+

〈∫
ζ · curl f2

〉
δε

+

〈∫ 〈
ζ
〉
δε
·
〈
∇ f1

〉
δε

〉
δε

+

〈∫ (
ζ −

〈
ζ
〉
δε

)
·
(
∇ f1 −

〈
∇ f1

〉
δε

)〉
δε

= A1 + A2 + A3 + A4.

The first term is estimated by the Cauchy–Schwarz inequality:

|A1| 6 ‖ζ‖L∞

∥∥∥∥ j (u)
|u|

∥∥∥∥
L2

‖(1− |u|2)‖L2 6 C
n
ρ2
?

εEε(u) . |log ε|−
1
3 . (113)

(3) Next, we claim that

|A2| 6 Csε
3
5

[
n

6
5 ρ
−

8
5

? (Eε(u)+ nπ)
2
5

]
. |log ε|−

1
3 . (114)

From the Hodge decomposition and standard elliptic estimates [39], we have

‖ curl f2‖L p(Ω) 6 ‖ f2‖W 1,p(Ω) 6 Csε
2
p−1
(Eε(u)+ n)2−

2
p
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for 1 6 p < 2, with a constant depending on p. Taking 1
q = 1 − 1

p in (109) for
p ∈ [1, 2) to be selected, we conclude that

|A2| 6 ‖ζ‖Lq‖ curl f2‖L p 6 Cn2− 1
p ρ
−

2
p

? sε
2
p−1

(Eε(u)+ nπ)2−
2
p .

Choosing p = 5
4 , we arrive at (114).

(4) Next, we estimate A3, and here we fundamentally use the time averaging to
control ∇ f1.∥∥∆〈 f1

〉
δε

∥∥2

L2 =
∥∥div

〈
j (u)− j (u?)

〉
δε

∥∥2

L2 =
∥∥〈div j (u)

〉
δε

∥∥2

L2

=

∥∥∥∥ 1
δε

∫ t

t−δε

(iu, ∂t u)
|log ε|

∥∥∥∥2

L2

6
∫
Ω

1
δε|log ε|

∫ t

t−δε

∣∣∂t u
∣∣2

|log ε|
.

1
δε|log ε|

n2

ρ2
?

.

By standard elliptic estimates,∥∥〈 f1
〉
δε

∥∥
H2 .

∥∥∆〈 f1
〉
δε

∥∥
L2 .

n

δ
1
2
ε ρ?|log ε|

1
2

.

Combining with (75), (76), (79) yields∣∣∣∣∫ 〈ζ 〉δε · 〈∇ f1
〉
δε

∣∣∣∣ 6 ∥∥〈ζ 〉
δε

∥∥
L

4
3

∥∥〈∇ f1
〉
δε

∥∥
L4

6 C
〈∥∥ζ∥∥

L
4
3

〉
δε

∥∥〈∇ f1
〉
δε

∥∥
H1

.
n

11
4

δ
1
2
ε ρ

3
2
? |log ε|

1
2

. |log ε|−
277
800 ;

hence, ∣∣A3

∣∣ . |log ε|−
1
3 . (115)

(5) Finally, we consider the challenging term A4, and we again following the
strategy of [23]. The idea is to take advantage of the fact that δε is small to show
that ζ is close to

〈
ζ
〉
δε

, and similarly ∇ f1 and
〈
∇ f1

〉
δε

. First, we have

|A4| 6 sup
s∈[t−δε,t]

‖ζ(s)−
〈
ζ
〉
δε
‖L4 sup

s∈[t−δε,t]
‖∇( f1(s)−

〈
f1
〉
δε
)‖

L
4
3

6 sup
s,s′∈[t−δε,t]

‖ζ(s)− ζ(s ′)‖L4 sup
s,s′∈[t−δε,t]

‖∇( f1(s)− f1(s ′))‖L
4
3
. (116)
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In estimating the quantities in (116), we will use that, for s, s ′ ∈ [t − δε, t] with
t ∈ [δε, τ1],

|a j(s)− a j(s ′)| .
n
ρ?
δε, (117)

which follows from (9). Note that (117) and (37) imply that |ȧ j | .
n
ρ?

. From (117)
and (91), (94) it follows that, for s, s ′ as above,

n∑
j=1

∣∣ξ j(s)− ξ j(s ′)
∣∣ 6 C

n2

ρ?
δε + η(s)+ η(s ′)+ Ctε .

n2

ρ?
δε +Dε. (118)

(5a) We estimate ‖∇( f1(s) − f1(s ′))‖L
4
3
. Assume that s, s ′ ∈ [t − δε, t] for

t ∈ [δε, τ1]. By elliptic regularity, (110), and either (111) or (112) we find that,

‖∇( f1(s)− f1(s ′))‖L
4
3
6 C‖∆( f1(s)− f1(s ′))‖Ẇ−1, 4

3

= ‖∇ · [ j (u)(s)− j (u)(s ′)]‖
Ẇ−1, 4

3

6 ‖ j (u)(s)− j (u)(s ′))‖
L

4
3
. (119)

Using the triangle inequality and (62), it follows that

‖ j (u)(s)− j (u)(s ′))‖
L

4
3
.

√
Aε

(
sup

r∈[δ,s]
η(r)+ |log ε|−

1
2

)
+ ‖ j (u?)(s)− j (u?)(s ′))‖L

4
3

. |log ε|−
41

400 |log|log ε||
1
2 + ‖ j (u?)(s)− j (u?)(s ′))‖L

4
3
.

The last term on the right-hand side can be estimated by combining (40) and
(118), and we get

‖ j (u?)(s)− j (u?)(s ′))‖L
4
3
. n

1
2

(
δε

n2

ρ?
+Dε

) 1
2

.
n

3
2

ρ
1
2
?

δ
1
2
ε + n

1
2 D

1
2
ε . |log ε|−

9
80 .

The rest of the terms on the right-hand side of (119) are smaller using the bounds
on n, ρ?. Therefore, we find that

‖∇( f1(s)− f1(s ′))‖L
4
3
. |log ε|−

41
400 |log|log ε||

1
2 . (120)

(5b) We estimate ‖ζ(s)− ζ(s ′)‖L4 . Assume that 0 6 t − δε 6 s, s ′ 6 t 6 τ1. In
order to find a time-Lipschitz bound on ζ , we have from definition (108) that

ζk(s)− ζk(s ′) =
∑

j

∂xk xm

(
η j

|η j |
·Φ j

)
(s) jm(u?)(s)
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−

∑
j

∂xk xm

(
η j

|η j |
·Φ j

)
(s ′) jm(u?)(s ′)

=

∑
j

∂xk xm

[
η j

|η j |
· (Φ j(s)−Φ j(s ′))

]
jm(u?)(s)

+

∑
j

∂xk xm

(
η j

|η j |
·Φ j

)
(s ′)

[
jm(u?)(s)− jm(u?)(s ′)

]
= Z1 + Z2.

First, consider Z1. From the definitions,∥∥∥∥∂xk xm

[
η j

|η j |
· (Φ j(s)−Φ j(s ′))

]∥∥∥∥
L∞

6
∥∥∂xk xm [ϕ(x − a j(s))− ϕ(x − a j(s ′))]

∥∥
L∞

6 C
∥∥∂xk xm xnϕ

∥∥
L∞

∣∣a j(s)− a j(s ′)
∣∣ . n

ρ3
?

δε,

using (117).
As in [23], we claim that

supp∇2Φ j(s) ∪ supp∇2Φ j(s ′) ⊂ B3ρ?(ξ j(s)) \ B 1
2 ρ?
(ξ j(s)) (121)

for all ε sufficiently small. This follows from (117), (118), and (91). In particular,
the distances separating ai(s), ai(s ′), ξi(s), ξi(s ′) from each other are significantly
smaller than ρ?.

The support condition (121) implies that | j (u?)(ξ(s))| 6 Cn
ρ?

on the support of
Z1. Since the support of Z1 has measure bounded by Cnρ2

? , we conclude that

∥∥Z1

∥∥
L4 6

Cn2

ρ4
?

(Cnρ2
?

) 1
4 δε .

n
9
4

ρ
7
2
?

δε . |log ε|−
163
800 . (122)

Finally, we consider Z2. Since
∥∥∑

j ∂xl xmΦ j

∥∥
L∞ . 1

ρ?
, and using that supp Z2 has

measure at most Cnρ2
? , we use Hölder’s inequality to estimate∥∥Z2

∥∥
L4 6

C
ρ?

∥∥ j (u?)(s)− j (u?)(s ′)
∥∥

L∞(∪ j supp∇2Φ j (s′))
(Cnρ2

? )
1
4 .

It then follows that supp∪ j∇
2Φ j(s ′) ⊂ Ωρ?/2(ξ(s)) ∩Ωρ?/2(ξ(s

′)). We therefore
use (39) to find that

∥∥ j (u?)(s)− j (u?)(s ′)
∥∥

L∞(∪ j supp∇2Φ j (s′))
6

C
ρ2
?

n∑
j=1

∣∣ξ j(s)− ξ j(s ′)
∣∣.

https://doi.org/10.1017/fms.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.6


M. Kurzke and D. Spirn 48

Consequently, (118) and (106) imply that

∥∥Z2

∥∥
L4 6 C

(
n
ρ2
?

) 5
4
(

n2

ρ?
δε + η(s)+ η(s ′)+ Ctε

)
.

n
5
4

ρ
5
2
?

sup
δ6s6t

〈
η(t)

〉
δε
+

n
5
4

ρ
5
2
?

[
n2

ρ?
δε + δε

n
3
2

ρ?

√
Aε(Dε + |log ε|−

1
2 )+ tε

]
.

n3T
ρ4
?

sup
δ6s6t

〈
η(t)

〉
δε
+ |log ε|−

159
800 |log|log ε||

1
2 . (123)

Combining (122) and (123) yields

∥∥ζ(s)− ζ(s ′)∥∥L4 6 C
n3T
ρ4
?

sup
〈
η(t)

〉
+ C |log ε|−

159
800 |log|log ε||

1
2 . (124)

(6) Finally, we combine the above with (116), (120), and (124) to deduce that

|A4| .
n3T
ρ4
?

sup
〈
η(t)

〉
+ |log ε|−

3
10 . (125)

Combining (113), (114), (115), and (125) yields the bounds on
〈
T5
〉
δε

and
〈
T6
〉
δε

,
and this finishes the proof of Proposition 21.

6.4. Continuity arguments. We now complete the proof of our Theorem 1.

Proof of Theorem 1. Recall that τmax = min{τ0,C
√
|log|log ε|| ρ

4
?

n3 } denotes the
claimed longest possible time interval for which we can pin the vortices to the
a j(t). The main point of the proof will be to show that all relevant estimates hold
up to time τmax by a combination of continuity arguments for the Jacobian and a
Gronwall estimate on

〈
η
〉
δε

. If τ2 = τ1 = τmax , then Theorem 1 follows directly.
We assume that this statement does not hold, and the following is a proof by
contradiction in several parts.

(1) We first claim for any T > 0 that the solution operator to (1) is continuous
from [0, T ] → Ḣ 1; in particular,

‖∇u(t)−∇u(s)‖L2 6 Cε o(|t − s|) (126)

for 0 6 s 6 t 6 T , where Cε depends on ε and T but is independent of t, s. It is
standard theory (see, for instance, [15] Section 5.9, Theorem 4) that, if u ∈ L2(0,
T ; H 2(Ω;C)) and ∂t u ∈ L2(0, T ; L2(Ω;C)), then u ∈ C0([0, T ]; H 1(Ω;C)),
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which implies (126). These conditions are true for solutions of (1), since, by the
gradient flow property, ∫ T

0

∫
Ω

|∂t u|2 6 C Eε(u(0)) 6 Cε,

and from (29) and the initial conditions one finds that ‖u(t)‖L∞ 6 1, due to the
maximum principle; hence,∫ T

0

∫
Ω

|∆u|2 6 C
∫ T

0

∫
Ω

|∂t u|2 + C
∫ T

0

∫
Ω

1
ε2
|u|2

(1− |u|2)2

ε2

6 C Eε(u(0))+ CεT ‖u(t)‖2
L∞Eε(u0) 6 Cε,

where Cε depends on T and ε.
(2) Since J (u) = det∇u = −∇⊥u1 ·∇u2, where u = u1+ iu2, for any 0 6 s 6

t 6 T ,∥∥J (u)(t)− J (u)(s)
∥∥

Ẇ−1,1 = sup
‖φ‖

W 1,∞
0

61

∣∣∣∣∫ φ
(
J (u)(t)− J (u)(s)

)∣∣∣∣
6 C

∥∥∇u(t)−∇u(s)
∥∥

L2

∥∥∇u(t)+∇u(s)
∥∥

L2

6 Cε o(|t − s|) (127)

from (126), where Cε depends on ε and T .
(3) We claim that 0 6 τ2 < τ1 6 τmax . Suppose that this claim fails. Then, by

the definitions of τ1, τ2 and our assumption, 0 6 τ2 = τ1 < τmax . By maximality
of τ , we have

D(a(τ1)) 6 1 (128)

and ∥∥∥∥J (u)(τ1)−

n∑
j=1

δa j (τ1)

∥∥∥∥
Ẇ−1,1

6 Dε. (129)

Consider first (128). Since τ2 = τ1, η(τ1)6
1
2Dε =

1
2 |log ε|−

1
4 ; then (60) implies

that D(a(τ1)) 6 Aε

[
sups∈[0,τ2]

η(s) + |log ε|−
1
2
]
6 1

2 . We now claim that there
exists a µ0 such that, for all τ1 6 t̃ 6 τ1 + µ0, D(a(t̃)) 6 1. In particular, by (9)
and (37),

D(a(t̃)) = D(a(τ1))+

∫ t̃

τ1

∣∣ȧ∣∣2 − ∫ t̃

τ1

∫
Ω

∣∣∂t u
∣∣2

π |log ε|
6

1
2
+ Cµ0

n3

ρ2
?

6 1

for µ0 small enough.
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Next, consider (129). Again, η(τ1) 6
1
2Dε and so, by Lemma 17, we have

‖J (u)(τ1)− π
∑

δa j (τ1)‖Ẇ−1,1 6
1
2
|log ε|−

1
4 + Ctε 6

5
8
|log ε|−

1
4

for ε small enough. By (127) there exists a µ1 > 0 such that, for all τ1 6 t̃ 6
τ1 + µ1,

‖J (u)(t̃)− J (u)(τ1)‖Ẇ−1,1 6 C(Eε(u0)) o(µ1) 6
1
8
|log ε|−

1
4

for µ1 small enough. Furthermore, there exists µ2 such that, for τ1 6 t̃ 6 τ1+µ2,∥∥∥∥π∑ δa j (t̃) − π
∑

δa j (τ1)

∥∥∥∥
Ẇ−1,1

6 C
∑∣∣a j(t̃)− a j(τ1)

∣∣ 6 Cµ2

∑∣∣∇a j W
∣∣

6 C
n2

ρ?
µ2 6

1
8
|log ε|−

1
4

for µ2 small enough, where we used (37) in the third inequality. Therefore, for
µ = min{µ0, µ1, µ2} > 0 and all τ1 6 t̃ 6 τ1 + µ, we have∥∥∥∥J (u)(t̃)−

∑
πδa j (t̃)

∥∥∥∥
Ẇ−1,1

6 ‖J (u)(t̃)− J (u)(τ1)‖Ẇ−1,1

+ ‖π
∑

δa j (t̃) − π
∑

δa j (τ1)‖Ẇ−1,1

+ ‖J (u)(τ1)−
∑

δa j (τ1)‖Ẇ−1,1

6
7
8
|log ε|−

1
4 6 Dε,

and D(a(t̃)) 6 1. As µ > 0, this contradicts the maximality of τ1.
(4) We claim that, if τ2 6 |log ε|−

1
4 , then τ2 cannot be maximal. First, using

(105) and η(0) 6 1
8Dε, we have, for all 0 6 t 6 τ2,

η(t) 6
1
8
Dε + tC |log ε|−

7
80 |log|log ε||

1
2

6
1
8
Dε + τ2C |log ε|−

7
80 |log|log ε||

1
2 6

1
8
Dε +

1
8
Dε,

and so η(τ2) 6
1
4Dε. Next, we use (97), Young’s inequality, and Lemma 22 below

with x(t) = η(t), A = |log ε|
3
10 , B = |log ε|−

2
5 , and G(t) =

∫
Ω

|∂t u|2

|log ε|2 to get, for
all τ2 6 t 6 τ2 + µ̃,

η(t) 6 exp
(
µ̃|log ε|

3
10
)[
η(τ2)+ |log ε|−

2
5

]
6

1
4
Dε (130)

for 0 < µ̃ < τ1 − τ2 small enough. This contradicts the maximality of τ2.
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(5) Using Step 4, we have τ1 > τ2 > δε.
(6) We now show that the assumption τ2 < τmax leads to a contradiction. By

Step 4 and Step 5, we see that τ2 > δε with sup06s6δε η(s) 6
1
4Dε; therefore,〈

η
〉
δε
(δε) 6

1
4Dε. From (107) in Proposition 21, we have the differential inequality

for the averaged
〈
η
〉
δε

,

d
dt

〈
η
〉
δε
6 |
〈
T j
〉
δε
(t)| .

n3

ρ4
?

sup
s∈[δε,t]

〈
η
〉
δε
(s)+ |log ε|−

3
10

for all δε 6 t 6 τ2. Using the Gronwall argument from Lemma 22 below with
x(t) =

〈
η
〉
δε

, A = n3

ρ4
?
, B = |log ε|−

3
10 , and G(t) = 0, we find that

〈
η(t)

〉
δε
6

(〈
η(δε)

〉
δε
+ |log ε|−

3
10

ρ4
?

n3τmax

)
exp

[
n3τmax(t − δε)

ρ4
?

]
6

3
8
Dε

for all δε 6 t 6 τ2. In particular, η(τ2) 6
〈
η
〉
δε
(τ2) + |η(τ2) −

〈
η
〉
δε
(τ2)| 6

4
9Dε.

Repeating the argument in Step 4, and using (130), we see that the estimate
necessary for τ2 also holds at τ2 + µ̂ for some µ̂ < τ1 − τ2, contradicting the
maximality of τ2.

(7) From Step 3 and Step 6, we see that τ2 = τ1 = τmax , which proves (13)
and (14).

(8) Finally, we prove (15) and (16). Since Ωρ?(a(t)) ⊂ Ωσ?(ξ(t)),∫
Ωρ? (a(t))

eε(|u(t)|)+
1
4

∣∣∣∣ j (u(t))
|u(t)|

− j (u?(a(t))
∣∣∣∣2

6
∫
Ωρ? (a(t))

eε(|u(t)|)+
1
2

∣∣∣∣ j (u(t))
|u(t)|

− j (u?(ξ(t))
∣∣∣∣2

+

∫
Ωρ? (a(t))

1
2
| j (u?(ξ(t))− j (u?(a(t))|2.

From (39), we find that
∫
Ωρ? (a(t))

| j (u?(ξ(t)) − j (u?(a(t))|2 . |log ε|−
1
5 . Bound

(16) follows from a similar estimate, using (40) instead.

We conclude with the following Gronwall estimate used at the end of the proof
of Theorem 1.

LEMMA 22. Suppose that A, B are positive constants and that G(t) > 0 is
integrable, and suppose that

d
dt

x(t) 6 A sup
s∈[0,t]

x(s)+ B + G(t).
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Then, for any 0 6 r 6 t ,

x(t) 6 eA(t−r)

[
x(r)+

B
A
+

∫ t

r
G(s)

]
.

Proof. Let m(t) = sups∈[0,t] x(s). Then ṁ(t) 6 max{ẋ(t), 0}, since the maximum
can increase only if x increases. On the one hand, if ṁ(t) 6 ẋ(t), then ṁ(t) 6
ẋ(t) 6 Am(t)+ B+G(t). On the other hand, if ṁ(t) 6 0, then ṁ(t) 6 Am(t)+
B + G(t). The estimate follows.

7. Hydrodynamic limit

In this section, we will prove Theorem 2 in two steps and sketch the proof of
Theorem 3. First, we show that, under good assumptions on the initial data, the
ODE vortex cloud converges to a solution of the mean field equation.

Then we show that these assumptions on the initial data and those of Theorem 1
can be simultaneously fulfilled for a suitably chosen sequence n → ∞, and
then we can relate the rescaled energy densities ((eεn (uεn (t)))/(nπ |log εn|)) to
the mean field equation.

PROPOSITION 23 (Convergence of ODE to mean field PDE). Consider a
sequence of initial data {a j(0)}nj=1, and assume that

−
1
n2

∑
j 6=k

Nn(a j(0), ak(0)) . 1

for every n. Let a j(t) solve (9), with W (a) in the Dirichlet case. Setting ωn(t) =
1
n

∑n
j=1 δa j (t), then, in the rescaled time t = nt, we find that ωn(t)→ ω(t) in M

for all t and that ω is a generalized interior weak solution (as defined in (20)) to

∂tω + div
(
4π∇

(
∆−1

N ω
)
ω
)
= 0

with ω0 = limωn(0). Finally, we have v ∈ L2
loc(Ω), where v = 4π∇∆−1

N (ω).

We first show that the vortex density function ωn(t) satisfies an equation very
close to (20). Recall from [3, Theorem VIII.3] that

−∇a j W (a) = 2π∇S j
n (a j),

where S j
n (x) =

∑n
k=1 Nn(x, ak)− log |x − a j |, so

∇S j
n (x) =

n∑
k 6= j

∇Nn(x, ak)+

[
∇Nn(x, a j)−

x − a j

|x − a j |
2

]
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=

n∑
k 6= j

∇Nn(x, ak)+∇Hn(x, a j).

For any test function χ ∈ C∞0 (Ω), and with ωn =
1
n

∑n
j=1 δa j (t), we have

1
n
∂t

∫
χωn(t) =

1
n2
∂t

n∑
j=1

χ(a j) =
1
n2

n∑
j=1

∂`χ(a j)
[
ȧ j
]
`

= −
1
πn2

n∑
j=1

∂`χ(a j)
[
∇a j W (a)

]
`
=

2
n2

n∑
j=1

∂`χ(a j)∂`S j
n (a j)

=
2
n2

n∑
j=1

∫
∂`χ(x)∂`S j

n (x)δa j (x).

Using 2πδak = ∆Nn(·, ak) and the above identity for ∇S j
n yields

1
n
∂t

∫
χωn(t) =

1
π

1
n2

n∑
j=1

∫
∂`χ(x)

×

[∑
k 6= j

∂`Nn(x, ak)+ ∂`Hn(x, a j)

]
∂m∂m Nn(x, a j) dx

=
1
π

∫ ∫ ∫
y 6=z
∂`χ(x)∂`Nn(x, y)∂m∂m Nn(x, z)ωn(y)ωn(z) dy dz dx

+
1
π

1
n

∫ ∫
∂`χ(x)∂`Hn(x, y)∂m∂m Nn(x, y)ωn(y) dy dx

= An + Bn.

Following [34], we define the matrix-valued function K(n, y, z; η):

K jk(n, y, z, η) =
∫
Ω

η(x)∂x j Nn(x, y)∂xk Nn(x, z) dx, (131)

and after a short calculation using symmetry and (19), one can rewrite An and Bn

as

An = −
1
π

∫ ∫ ∫
y 6=z

(
K11 −K22

)(
n, y, z,

(
∂2

x1
− ∂2

x2

)
χ
)
ωn(y)ωn(z) dy dz dx

−
4
π

∫ ∫ ∫
y 6=z

K12
(
n, y, z, ∂x1∂x2χ

)
ωn(y)ωn(z) dy dz dx =: A1

n + A2
n

Bn =
1

nπ

∫ ∫
∂m∂m

(
∂`χ ∂`Hn(x, y)

)
Nn(x, y)ωn(y) dy dx .

https://doi.org/10.1017/fms.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.6


M. Kurzke and D. Spirn 54

We will show that, as n → ∞, Bn converges to zero and the A j
n converge to the

form of the generalized weak solution. However, in order to complete the proof,
we prove two technical lemmas on the K jk and the vorticity maximal function
(defined below).

LEMMA 24. The matrix functions K jk(n, y, z, η) defined in (131) satisfy the
following estimates for y, z ∈ Ω and η ∈ C∞0 (Ω):∣∣(K11 −K22

)(
n, y, z, η

)∣∣ 6 C (132)∣∣K12
(
n, y, z, η

)∣∣ 6 C (133)∣∣K11
(
n, y, z, η

)∣∣+ ∣∣K22
(
n, y, z, η

)∣∣ 6 2 log |y − z| + C, (134)

where C depends only on η, ϕ?, and Ω . Finally, we have the bound∣∣∇k
x Hn(x, y)

∣∣ 6 C
dist(y, ∂Ω)k

, (135)

where C depends on k, ϕ?, and Ω .

Proof. These estimates are similar to ones found in Delort [9] and Evans and
Müller [16] for the associated Green’s function on R2; therefore, we only sketch
the proof of (133) following the argument of [16]. The proofs of (132) and (134)
can be established by similar adjustments of arguments in [16].

To prove (133), one needs to examine the behavior of the gradient of Hn(x,
p) = Nn(x, p)−log |x− p| defined via (43) and (44). Since the test function η has
compact support away from the boundary, it follows that ∂x j Hn(x, ·) is bounded
for all x on the support of η (as are higher derivatives of Hn(x, ·)), as in the proof
of Lemma 7. We can now write∣∣K12

∣∣ = ∣∣∣∣∫ η(x)
[
(x − y)1
|x − y|2

+ ∂x1 Hn(x, y)
][
(x − z)2
|x − z|2

+ ∂x2 Hn(x, z)
]

dx
∣∣∣∣

6

∣∣∣∣∫ η(x)
[
(x − y)1
|x − y|2

(x − z)2
|x − z|2

]∣∣∣∣+ ∣∣∣∣∫ η(x)
[
(x − y)1
|x − y|2

∂x2 Hn(x, z)
]∣∣∣∣

+

∣∣∣∣∫ η(x)
[
∂x1 Hn(x, z)

(x − y)2
|x − y|2

]∣∣∣∣+ ∣∣∣∣∫ η(x)
[
∂x1 Hn(x, z)∂x2 Hn(x, z)

]∣∣∣∣
= I1 + I2 + I3 + I4.

Using the support of η and the explicit estimates in the proof of Theorem 1.1
of [16], it follows that I1 6 C . I4 6 C due to the uniform bounds on ∇x Hn(x, ·)
for x having compact support away from the boundary, where C depends on the
distance from the support to the boundary. Finally, we consider the bounds on I2

https://doi.org/10.1017/fms.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.6


Vortex Liquids and the Ginzburg–Landau equation 55

and I3, which can be handled by identical bounds. Due to the uniform bound on
∇x Hn(x, ·) away from the boundary, we have

I2 =

∣∣∣∣∫ η(x)
[
(x − y)1
|x − y|2

∂x2 Hn(x, z)
]∣∣∣∣ . ∫

supp(η)

1
|x − y|

dx

.
∫ diam(Ω)

0
dr . 1.

Combining the estimates yields (133).

Define for any Radon measure µ the maximal vorticity function Mr (µ) of
DiPerna and Majda [10]:

Mr (µ) = sup
x∈Ω,0<t6T

∫
Br (x)∩Ω

|µ(y, t)| dy

for 0 < r 6 1
2 . As in [35, 34, 32], we prove a decay estimate on Mr (ωn) below in

order to pass to the limit in the main term An .

LEMMA 25. Suppose that {a j(t)}nj=1 arise from the hypotheses of Proposition 23.
Then we can bound

Mr (ωn(t)) .
1√
|log r |

+
1
√

n

for all n and all r 6 1. Furthermore,

Mr (ω) .
1√
|log r |

.

Proof. Following the structure of the argument in [34], we have, for some positive
integer kx 6 n,

|log r |M2
r (ωn(t)) = |log r |

[
1
n

#{a j(t) ∈ Br (x) ∩Ω}
]2

= |log r |
kx(kx − 1)

n2
+ |log r |

kx

n2

.

[
1
n2

∑
|a j−ak |6r

[
−Nn(a j , ak)+ C

]]
+
|log r |

n
Mr (ωn)

. 1+
|log r |

n
Mr (ωn),

where we used Lemma 7 and
∑

j 6=k 1 6 n2. Since Mr (ωn) 6 1, the bound follows.
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For the bound on Mr (ω), we have for χ ∈ C∞ where χ = 1 on Br (x) and
χ = 0 on R2

\B2r (x), x is chosen where
∫

Br (x)∩Ω
ω(t) is maximal, and so

Mr (ω) 6
∫
χω = lim

n→∞

∫
χωn 6 lim

n→∞
M2r (ωn) .

1√
|log r |

.

Proof of Proposition 23. We now examine the convergence behavior of A j
n and

Bn . From Lemma 24, one can follow the arguments of [44, 34] to establish the
convergence of A j

n . Looking at A1
n , and taking χ ∈ C∞0 (Ω) and setting η =

(
∂2

x1
−

∂2
x2

)
χ , we have

A1
n = −

1
π

∫ ∫ ∫
{|y−z|>r}∩Ω

(
K11 −K22

)(
n, y, z, η

)
ωn(y)ωn(z) dy dz dx

−
1
π

∫ ∫ ∫
{0<|y−z|<r}∩Ω

(
K11 −K22

)(
n, y, z, η

)
ωn(y)ωn(z) dy dz dx .

Since
(
K11 − K22

)(
n, y, z, η

)
is continuous in each variable and bounded in the

first region, that term converges to

−
1
π

∫ ∫ ∫
{|y−z|>r}∩Ω

(
K11 −K22

)(
∞, y, z, η

)
ω(y)ω(z) dy dz dx .

On the other hand, in the second region we have∣∣∣∣ 1
π

∫ ∫ ∫
{0<|y−z|<r}∩Ω

(
K11 −K22

)(
n, y, z, η

)
ω(y)ω(z) dy dz dx

∣∣∣∣
6 C

∫ ∫
{0<|y−z|<r}∩Ω

ωn(y)ωn(z) dy dz

.
∥∥ωn

∥∥
M(Ω)

∫
{|z|<r}∩Ω

ωn(z) dz

. Mr (ωn),

and by Lemma 25 the term goes to zero as n →∞ and r → 0. This implies that
A1

n → A1. The convergence of A2
n is much easier, since the kernel is continuous

on the entire domain.
Next, we show that Bn → 0, and here we crucially use the compact support

of the our test function χ . Bn consists of three terms, depending on where
the derivatives hit. We consider the worst case in which all derivatives hit Hn .
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Using (135), we get

1
nπ

∣∣∣∣∫ ∫
∂`χ∂m∂m∂`Hn(x, y)Nn(x, y)ωn(y) dy dx

∣∣∣∣
.

1
n

∥∥ωn

∥∥
M→ 0

as n→∞. The rest of the terms of Bn are estimated in a similar fashion.
Finally, we can prove the estimate on the kinetic energy in the fashion of Liu

and Xin [34]. As in [34], one can use the decay of Mr (ω)→ 0 to prove that

−

∫ ∫
{|y−z|6r}∩Ω

log |y − z|ω(y)ω(z) dy dz . 1. (136)

Then, for K a compact set in Ω , take a nonnegative test function χ ∈ C∞0 (Ω)
with χ = 1 on K . Then∫

K
v2 6

∫
χv2
= 4

∫ ∫ (
K11 +K22

)
ω(y)ω(z) dy dz

= 4
∫ ∫

{|y−z|<r}∩Ω

(
K11 +K22

)
ω(y)ω(z) dy dz

+ 4
∫ ∫

{|y−z|>r}∩Ω

(
K11 +K22

)
ω(y)ω(z) dy dz

= A + B.

Since B is away from the singularity, we see immediately that B is bounded. The
bound on A follows from (134) and (136).

We are now in position to establish the hydrodynamic limit. The primary task is
to approximate the initial data in a suitable way by quantized vortices that satisfy
a good energy bound. Then we can use Proposition 23.

Proof of Theorem 2. We first approximate initial data for 0 6 ω0 ∈M∩ Ḣ−1(Ω)

in a suitable way so that we can use both Theorem 1 and Proposition 23.
(1) Assume that suppω0 ⊂ Ω̃ with dist(Ω̃, ∂Ω) > C > 0. We then cover our

set Ω with nonoverlapping squares {Q j }, where

Q j ≡ j’th square of side-length h,

so there exist O(h−2) squares Q j that cover Ω . We then set

h = n−
1
4 (137)
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so h−2
� n. We now define

ωn
0 =

∑
Q j

ωn
0, j ,

where the ωn
0, j are set below. Next, set

ñh
j =

n
2π

∫
Q j

ω0

and n j = b̃nh
jc. Then |n j − ñh

j | < 1 and∣∣∣∣∑
j

n j − n
∣∣∣∣ . h−2

= n
1
2 . (138)

Sinceω0 has compact support, for all h 6 h0 = h0(Ω) small enough, if Qk∩∂Ω 6=

∅, then n j = 0. If we set n̂ =
∑

j n j , then

n − Cn
1
2 6 n̂ 6 n,

so n̂ → ∞ at the same rate as n → ∞. We can then use n̂ instead of n in the
discussion below; however, we relabel n̂ as n for simplicity.

Next, we slice Q j into n j thin rectangles of equal width. They will be aligned
vertically and horizontally in alternating sequence; see Figure 2. In the center
of each of these subrectangles we label points {a1

0, j , . . . , an j
0, j }, so the distance

between neighboring points is h
n j

. Finally, we let

ωn
0, j =

1
n

n j∑
k=1

δak
0, j
,

where the ak
0, j are defined above. In the worst-case scenario, all vortices are

located in a single cell with intervortex distance O( h
n ) ≈ n−

5
4 , and we will need

to check that this conforms to the correct bound on ρa(0).
We claim that ωn

0 → ω0 in M(Ω). Let fU denote the average of f on U .
Then, for χ ∈ C0

0(Ω),
∣∣∫
Ω
χ
(
ωn

0 − ω0
)∣∣ 6 ∑

Q j

∣∣∫
Q j
(χ − χQ j )(ω

n
0 − ω0)

∣∣ +∑
Q j

∣∣χQ j

∣∣∣∣∫
Q j
ωn

0 −ω0

∣∣→ 0 as n→∞, from (137), (138), and the continuity of
χ . Therefore, ω0

n → ω0 in M(Ω).
2. Finally, we claim that

−
1
n2

∑
a j

0,i 6=a`0,k

Nn(a
j
0,i , a`0,k) . 1. (139)

Since the support of ω0 lies in a compact set away from the boundary,

min{dist(ak
0, j , ∂Ω)} > C > 0
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Figure 2: Construction of the rectangles in the Qk’s

uniformly in n. Hence, we have |Hn(ak
0, j , a`0,i)| 6 C uniformly in n. In particular,

to establish (139) it is sufficient to prove that

−
1
n2

∑
a j

0,i 6=a`0,k

log |a j
0,i − a`0,k | . 1.

We subdivide the sum into those vortex interactions arising from the same Q j and
those that arise from differing Qk :

−
1
n2

∑
a j

0,i 6=a`0,k

log |a j
0,i − a`0,k | = −

1
n2

∑
j

∑
k 6=`

log |ak
0, j − a`0, j |

−
1
n2

∑
j 6=k

∑
i,`

log |ai
0, j − a`0,k |

= A + B.

We now consider the sum A. Concentrating on a single Q j , assume without loss of
generality that the subrectangles are vertical and that a1

0, j is located at the origin.
Then the vortices in this square are located along the x-axis with x values at
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{0,∆, 2∆, . . . , (n j − 1)∆}, where ∆ = h
n j

. Summing over the log interactions
yields

−

∑
k 6=`

log |ak
0, j − a`0, j | = −

[
(n j − 1) log |∆| + (n j − 2) log |2∆|

+ · · · + log |(n j − 1)∆|
]

6
n j(n j − 1)

2
log∆−1 6

n2
j

2
log h−1

+
n2

j

2
log n

6 3n2
j log h−1,

since log h−1
=

1
4 log n. Now summing over the j and using that n j

n 6 1
2π

∫
Q j
ω0,

we get

A = −
1
n2

∑
j

∑
k 6=`

log |ak
0, j − a`0, j | .

1
n2

∑
j

n2
j log h−1

.
∑

j

log h−1
∫

Q j

ω0(y)
∫

Q j

ω0(z)

. −
∑

j

∫
Q j

∫
Q j

ω0(y) log |y − z|ω0(z) dy dz.

Next, we bound B. Let p j denote the center of the square Q j . Due to the
alternating alignment of the subrectangles in Figure 2, we see that∣∣log |ai

0, j − a`0,k | − log |p j − pk |
∣∣ 6 C,

even for neighboring squares. Therefore,

B = −
1
n2

∑
j 6=k

∑
i,`

log |ai
0, j − a`0,k |

= −
1
n2

∑
j 6=k

n j∑
i=1

nk∑
`=1

log |ai
0, j − a`0,k |

6 C −
C
n2

∑
j 6=k

n j∑
i=1

nk∑
`=1

log |pi − pk | = C −
C
n2

∑
j 6=k

n j nk log |pi − pk |

. 1−
∑
j 6=k

log |pi − pk |

∫
Q j

ω0(y)
∫

Qk

ω0(z)

. 1−
∑
j 6=k

∫
Q j

∫
Qk

ω0(y) log |y − z|ω0(z) dy dz.
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Combining A and B together, we find that

A + B . 1−
∫
Ω

∫
Ω

ω0(y) log |y − z|ω0(z) dy dz

. 1+
∥∥ω0

∥∥
Ḣ−1(Ω)

∥∥µsupp(ω0)(y)
∫

log |y − z|ω0(z)
∥∥

H1(Ω)

. 1+
∥∥ω0

∥∥2

Ḣ−1 . 1,

where µQ is the characteristic function on Q.
(3) Now, we complete the proof of the hydrodynamic limit. Set εn such that

n = |log|log|log εn|||
1
4 and

ω̃n(t) =
1
n

eεn (uεn (t))
π |log εn|

.

Given the initial measure ω0, we build our initial data uεn (0)with vortices at {ak
0, j }

as generated above, and satisfying the hypotheses of Theorem 1. Such data can
be constructed following Lemma 14 of [23]. Then, since the energy is decreasing
in time, and using (87), we obtain for a subsequence that ω̃n → ω̃ in M(Ω × [0,
∞)). Furthermore, the intervortex distance is no worse than

ρa(0) > C
h
n
> Cn−

3
2 > C

∣∣log
∣∣log

∣∣log εn

∣∣∣∣∣∣− 3
8 >

∣∣log
∣∣log

∣∣log εn

∣∣∣∣∣∣− 1
3
;

therefore, both n and ρa(0) satisfy the requirements of Proposition 9.
From Proposition 23, we obtain that ωn =

1
n

∑
δa j (t) converges to some ω that

is an interior weak solution of (21). By Theorem 1, we see that ωn − ω̃n → 0 in
distribution, and so ω̃ = ω also solves (21).

Proof of Theorem 3. The proof of Theorem 3 follows along the same lines as the
proof of Theorem 2. In particular, we use assumptions (23)–(26) in order to satisfy
the hypotheses of Theorem 1. Next, assumptions (25)–(26) ensure the long-time
existence of the vortex dynamics via Proposition 9. Finally, assumption (27)
allows us to use the ODE to PDE result, Proposition 23. The proof follows.
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[3] F. Bethuel, H. Brezis and F. Hélein, ‘Ginzburg–Landau vortices’, in Progress in Nonlinear
Differential Equations and their Applications, vol. 13, (Birkhäuser, Boston, 1994).
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