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Abstract

Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds
over a number field. We work out their method in detail, showing that essentially all known
counterexamples to the integral Hodge conjecture over the complex numbers can be made to work
over a number field.
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1. Introduction

In seeking to understand the Hodge conjecture, it is important to ask how the
integral Hodge conjecture can fail. There are two known ways of producing
counterexamples to the integral Hodge conjecture: Atiyah–Hirzebruch’s
topological approach [2, 30], and Kollár’s use of degenerations [16]. Atiyah–
Hirzebruch’s method gives varieties defined over a number field, but has the
disadvantage that it only gives varieties of dimension at least seven. Kollár’s
approach disproves the integral Hodge conjecture for 3-folds, but is inexplicit
in that the examples are very general complex hypersurfaces of certain degrees.
Since ‘very general’ excludes countably many lower-dimensional subsets of the
space of hypersurfaces, it was not known whether the integral Hodge conjecture
was true for the countably many 3-folds which are defined over number fields.
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By refining Kollár’s method, Hassett and Tschinkel recently succeeded
in disproving the integral Hodge conjecture for 3-folds over number fields
[6, Remarque 5.10]. The method is flexible and should apply to other problems
where one hopes to show that ‘very general’ behavior also occurs over number
fields. The basic idea is to specialize cycles from a variety over a number field to
a variety over a finite field.

Hassett–Tschinkel’s method has only been described briefly by Colliot-
Thélene and Voisin. In this paper, we work out their method in detail in
Sections 3 and 4. We find that there are versions over Q of all the applications
of Kollár’s method made by Kollár [16], Debarre, Hulek, and Spandaw [7], and
Colliot-Thélene and Voisin [6, Proposition 5.8]. This often requires extra work
beyond Hassett–Tschinkel’s method, which we do in Sections 5 and 6. The point
is that the method works well if one can construct varieties of a given type over a
finite field with geometric Picard number 1. But this is impossible in many cases.
For example, Swinnerton-Dyer and Shioda observed that, on the assumption of
the Tate conjecture, every smooth projective surface over a finite field with even
second Betti number has geometric Picard number at least 2 [1, p. 544], [27, 5.2].
We avoid that difficulty by careful choice of the family of varieties to consider.

All known counterexamples to the integral Hodge conjecture on 3-folds,
including those in this paper, involve nontorsion classes in integral cohomology.
The original counterexamples by Atiyah and Hirzebruch were even-degree
torsion cohomology classes on varieties of dimension at least seven. Soulé and
Voisin exhibited even-degree torsion cohomology classes which are not algebraic
on certain 5-folds [28].

Hassett–Tschinkel’s method also gives the first counterexamples to the integral
Tate conjecture for 1-cycles on a variety over Q, and for 1-cycles on a variety
over the separable closure of Fp(t). These results are essentially optimal, since
Schoen showed that the usual Tate conjecture would imply the integral Tate
conjecture for 1-cycles on a variety over the separable closure of a finite field
[25, 5]. The only known counterexamples to the integral Tate conjecture over
finite fields are in dimension at least seven, by Colliot-Thélène and Szamuely
[5, Théorème 2.1].

2. Notation

A variety over a field is irreducible by definition. A curve is a variety of
dimension one.

The integral Hodge conjecture for a smooth complex projective variety X
asserts that every element of H2i(X,Z) whose image in H2i(X,C) is of type
(i, i) is the class of an algebraic cycle of codimension i, that is, a Z-linear

https://doi.org/10.1017/fms.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.3


On the integral Hodge and Tate conjectures over a number field 3

combination of subvarieties of X. The integral Tate conjecture for a smooth
projective variety X over a finitely generated field k asserts that, for any prime
number l invertible in k, every element of étale cohomology H2i(Xksep,Zl(i))
fixed by the Galois group Gal(ksep/k) is the class of an algebraic cycle with Zl

coefficients. (As Schoen points out, the integral Tate conjecture in this form fails
already for 0-cycles on the conic curve x2

+ y2
+ z2
= 0 over Q [25]. As a result,

it is more interesting to consider the integral Tate conjecture over the separable
closure of a finitely generated field.) The integral Tate conjecture for a smooth
projective variety X over the separable closure F of a finitely generated field
is the weaker statement that, for k a finitely generated field of definition of X,
every element of H2i(XF,Zl(i)) fixed by some open subgroup of Gal(F/k) is the
class of an algebraic cycle over F with Zl coefficients. The usual Hodge and Tate
conjectures, which may actually be true, are the analogous statements with Q or
Ql coefficients.

Griffiths and Harris conjectured that every curve in a very general complex
3-fold Y of degree d ≥ 6 in P4 has degree a multiple of d [14]. This would in
particular disprove the integral Hodge conjecture for 1-cycles on very general
hypersurfaces of any degree d ≥ 6, since there is an element of H4(Y,Z)∼= Z of
degree one (represented by a line on some hypersurfaces Y) and all of H4(Y,Z)
is of Hodge type (2, 2). More generally, Nori conjectured that, for any smooth
complex projective variety X and a very general sufficiently ample hypersurface
Y in X, the restriction map CHiX → CHiY on Chow groups should be an
isomorphism for all i< dim Y [22, p. 368]. (To be precise, Nori conjectured this
for Chow groups tensored with the rationals, but the integral statement seems
plausible in view of Kollár’s examples [16].)

3. Hypersurfaces in P1 × P3

This section gives Hassett and Tschinkel’s proof that the integral Hodge
conjecture fails for some hypersurfaces of bidegree (3, 4) in P1

× P3 over Q
[6, Remarque 5.10]. Colliot-Thélène and Voisin showed that the integral Hodge
conjecture fails for very general complex hypersurfaces of bidegree (3, 4) in
P1
× P3 [6, Proposition 5.8]. We give this example first because the proof is

easier than the later proofs for hypersurfaces in P4. The 3-folds here also have
the interest that their Kodaira dimension is one. This is probably the smallest
possible. Indeed, Voisin has proved the integral Hodge conjecture for 3-folds
which are uniruled or have trivial canonical bundle and first Betti number zero
[32, Theorem 2]. Grabowski proved the integral Hodge conjecture for abelian
3-folds [12, Section 3.1]. The problem remains open for more general 3-folds of
Kodaira dimension zero.
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THEOREM 3.1. The integral Hodge conjecture for 1-cycles fails for a Zariski-
dense set of smooth hypersurfaces of bidegree (3, 4) in P1

× P3 over Q.

For example, the proof shows that the integral Hodge conjecture fails for the
smooth hypersurface

u3x4
0 + tu2x4

1 + t2ux4
2 + t3x4

3 + 2u3x4
3 − 2t3x4

0 + 2u3x4
2 − 2t3x4

1 = 0

in P1
× P3 over Q. In this and the later examples, the proof shows more than

‘Zariski-dense’: the integral Hodge conjecture fails for a positive-density subset
of all hypersurfaces over Q of bidegree (3, 4), counted by height. The proof also
shows that the integral Hodge conjecture fails for a set of hypersurfaces over
Q which are dense in the space of all hypersurfaces over R with the classical
topology.

Proof. Let X be a smooth hypersurface of bidegree (3, 4) in P1
× P3 over Q.

Suppose that X specializes to the singular hypersurface

{([t, u], [x0, x1, x2, x3]): u3x4
0 + tu2x4

1 + t2ux4
2 + t3x4

3 = 0}

in P1
× P3 over Fp for some prime number p. (Similar equations have been used

in Kollár [17, IV.6.4.3.1] and in [31, proof of Theorem 0.1].) Then we will show
that every curve in X has even degree over P1. This violates the integral Hodge
conjecture for X, since H2(X,Z) maps isomorphically to H2(P1

× P3,Z) by the
Lefschetz hyperplane theorem, and the Hodge structure on H2(X,Z) is trivial.

Using the specialization map CH1(XQ)→ CH1(XFp) [11, Example 20.3.5],
it suffices to show that every curve C in XFp has even degree over P1. It
suffices to compute the degree of C→ P1

Fp
restricted to the generic point of

P1
Fp

, or restricted further to the field Fp((t)) of Laurent series around the point
[t, u] = [0, 1]. Thus, it suffices to show that the hypersurface

{[x0, x1, x2, x3]: x4
0 + tx4

1 + t2x4
2 + t3x4

3 = 0}

in P3 over Fp((t)) has no rational point over any odd-degree extension Fp((s))
of Fp((t)).

If there is a rational point over an odd-degree extension, then we have Laurent
series t(s) and xi(s) over Fp which satisfy the equation above and such that the
valuation r := ords(t) is odd. But the valuations of the four terms in the equation
are congruent to 0, r, 2r, 3r (mod 4). Since r is odd, these lowest degrees are all
different. So the only way the four terms can add up to zero is if all are identically
zero. That would imply that xi(s) = 0 for all i, but this does not correspond to a
point in projective space. Thus our hypersurface has no rational point over any
odd-degree extension of Fp((t)).
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This completes the proof that the integral Hodge conjecture fails for any
smooth hypersurface of bidegree (3, 4) in P1

× P3 over Q which specializes
to the given singular hypersurface over Fp for some prime number p. The set of
such hypersurfaces over Q, for a fixed prime number p, is Zariski dense in the
space of all hypersurfaces of bidegree (3, 4). �

4. Hypersurfaces in projective space over number fields

This section presents Hassett and Tschinkel’s method of producing
counterexamples to the integral Hodge conjecture for hypersurfaces in P4 over
number fields [6, Remarque 5.10]. We formulate the method as the following
generalization of Kollár’s lemma [16] (which gives very general complex
hypersurfaces).

LEMMA 4.1. Let Y be an irreducible projective 3-fold over Fp with a very ample
line bundle L such that L3

= d and L · C ≡ 0 (mod k) for every curve C in Y .
Assume that k is not a multiple of p and that d < p. Then there is a smooth
hypersurface X in P4 over Q (and also a smooth hypersurface over Fp(t)sep) of
degree d such that every curve C in X has

6 deg(C)≡ 0 (mod k).

In fact, the conclusion holds for a Zariski-dense set of hypersurfaces X over Q.

Note that the integral Hodge conjecture (or the integral Tate conjecture) would
imply that every smooth hypersurface in P4 over Q contains a 1-cycle of degree
one. So the lemma gives many counterexamples to the integral Hodge conjecture.
We first present the easy case of a hypersurface of degree 64 over Q. With more
work, Lemma 5.1 will give an example of lower degree, 48, which is defined
over Q. (In view of the Griffiths–Harris conjecture, I would expect that for every
d at least 6 there is a smooth hypersurface X of degree d in P4 over Q such that
every curve in XQ has degree a multiple of d.)

The proof of Lemma 4.1 gives something more precise than hypersurfaces
over Q: there is a Zariski-dense set of hypersurfaces X satisfying the conclusion
over any number field F that has Fpr as a residue field, for a certain positive
integer r that could be computed. In many cases, one can take r = 1, and then
there are hypersurfaces over Q that satisfy the conclusion.

COROLLARY 4.2. There is a smooth hypersurface X of degree 64 in P4 over Q
such that every curve on X has even degree. In particular, the integral Hodge
conjecture fails for X.
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Proof. Apply Lemma 4.1 to the 3-fold (Y,L) = (P3,O(4)) over Fp, for any
prime number p> 64. �

Proof of Lemma 4.1. We begin with the following lemma on general projections,
which is well known in characteristic zero. It is important for some later
applications that we put no restriction on the singularities.

LEMMA 4.3. Let Y ⊂ PN be a nondegenerate absolutely irreducible variety of
dimension n over an infinite field F. If F has characteristic p > 0, assume that
Y has degree less than p. Then a general linear projection of Y to Pn+1 over F is
a morphism that is (set-theoretically over F) at most 2-to-1 in codimension one
and at most 3-to-1 in codimension two.

Proof. Repeatedly reducing from Y to a general hyperplane section, we can
assume that Y has dimension two. That is, we have to show that, for a
nondegenerate surface X in PN , with deg(X) < p if F has characteristic p,
a general projection of Y to P3 is (set-theoretically) 2-to-1 at most on a
one-dimensional subset, 3-to-1 at most on a zero-dimensional subset, and
nowhere 4-to-1 or worse. For surfaces in characteristic zero, this is proved
by Griffiths and Harris [13, pp. 611–613] using the general position lemma:
for a nondegenerate curve in projective space, a general hyperplane section
of the curve consists of points in linear general position. The general position
lemma fails in general in characteristic p, but it holds for curves in PN (possibly
singular) of degree less than p, by Rathmann [24, Corollaries 1.8, 2.2]. Then the
Griffiths–Harris argument applies. �

To prove Lemma 4.1, let ϕ: Y → PN be the embedding given by L over Fp.
Let π : Y → Y ⊂ P4 be a general projection. By Lemma 4.3, every curve C
in Y is the image of a curve D in Y by a morphism that is set-theoretically
1-to-1, 2-to-1, or 3-to-1. It follows that the degree of the morphism D→ C
is apr for some 1 ≤ a ≤ 3 and some r ≥ 0. Since L · D ≡ 0 (mod k), we
have 6pr deg(C) = 6prL · C ≡ 0 (mod k). Since p does not divide k, we have
6 deg(C)≡ 0 (mod k).

There is a smooth hypersurface X of degree d in P4 over Q (or over Fp(t)sep)
that specializes to the singular hypersurface Y ⊂ P4 over Fp. For any such
hypersurface, the specialization map CH1(X)→ CH1(Y) [11, Example 20.3.5]
shows that every curve C in X has 6 deg(C) ≡ 0 (mod k). The set of
hypersurfaces X over Q that specialize to any given hypersurface Y over Fp is
Zariski dense in the space of all hypersurfaces, as we want. �
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5. Degree 48

The complex 3-fold hypersurfaces of lowest degree for which the integral
Hodge conjecture is known to fail have degree 48, by Kollár [16]. (Note the
typographical error in the first example in [16]: these hypersurfaces have degree
3k2 for k ≥ 4, not k2.) In this section, we find that the integral Hodge conjecture
also fails for some hypersurfaces of degree 48 over Q.

Kollár’s example relies on the Noether–Lefschetz theorem that a very general
quartic surface in P3 over C has Picard number 1. We want to apply Lemma 4.1,
but there is an extra complication: if we believe the Tate conjecture, then
every smooth surface of even degree in P3 over Fp has Picard number at least
2, by Swinnerton-Dyer and Shioda [1, p. 544], [27, 5.2]. (In fact, we know
unconditionally that smooth quartic surfaces over Fp have Picard number at
least 2 if p ≥ 3, since the Tate conjecture has been proved for K3 surfaces
in characteristic p ≥ 3 by Nygaard-Ogus et al. [4, 19, 20, 23].) We get around
the problem by finding a quartic surface with a node in P3 over Fp which has
geometric Picard number 1. The method was suggested by de Jong and Katz’s
construction of smooth surfaces of any odd degree at least five in P3 over Fp with
Picard number 1 [10, Theorem 6.11].

LEMMA 5.1. There is a smooth hypersurface X of degree 48 in P4 over Q
such that every curve in XQ has even degree. In particular, the integral Hodge
conjecture fails for X. The set of hypersurfaces X over Q with these properties
is Zariski dense in the space of all hypersurfaces of degree 48.

Proof. In order to get examples over Q rather than just Q, it seems that we need
to use the idea of Lemma 4.1 rather than just quoting the lemma. Let S→ B be
the universal family of quartic surfaces in P3 with exactly one node, which we
consider over Z[1/2]; then B is an integral scheme over Z[1/2]. Let SQ(B) be the
generic fiber of S→ B, which is a nodal quartic over the function field Q(B). Let
X = S× P1 with the line bundle L= π∗1 O(1)⊗ π∗2 O(4). Thus X→ B is a family
of 3-folds equipped with a very ample line bundle L having degree L3 equal to
3 · 42

= 48. Let XQ(B) = SQ(B) × P1 be the generic fiber of X→ B, embedded
in some projective space PN using L. By Lemma 4.3, a general projection of
XQ(B) ⊂ PN to P4 is a morphism that is (set-theoretically) at most 2-to-1 in
dimension two and at most 3-to-1 in dimension one. We can view this morphism
as a rational map X 99K P4

B over B. After replacing B by some nonempty open
subset, we have a morphism X→ P4

B over B which is 2-to-1 at most in dimension
two and so on, over every point of B.

The arithmetic fundamental group π1B (with a base point in B(Q)) has a
monodromy representation on H2(SQ,Z2(1)) ∼= (Z2)

21, where SQ is a quartic
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surface with a node over Q. This representation preserves the intersection form
(which is nondegenerate⊗Q2) and the vanishing subspace ker(H2(SQ,Z2(1))→
H4(P3,Z2(2))), giving a homomorphism π1B→ O(20,Z2) to an orthogonal
group.

By Deligne’s arguments using the Picard–Lefschetz theory, the image of
the geometric fundamental group π1BQ ⊂ π1B is Zariski dense in O(20,Q2)

[9, Theorem 4.4.2]. (Deligne’s arguments using a Lefschetz pencil show that
the monodromy of π1BC is either Zariski dense in O(20,Q) or finite and
irreducible. The finite case can be ruled out as follows, working over C. Since
the monodromy representation on the vanishing cohomology Q20 of SC is
irreducible, there is a unique invariant symmetric bilinear form on Q20 up to
scalars, which must be positive or negative definite if the representation has finite
image. But the Hodge–Riemann bilinear relations give that the intersection form
has sign (−1)p on Hp,q

prim(S) [13, p. 123]. Since H2,0
prim(S) 6= 0, the monodromy must

be Zariski dense in O(20,Q), rather than finite.)
We return to the scheme B over Z[1/2]. Since the geometric fundamental

group π1BQ is a subgroup of π1B, the image of π1B is also Zariski dense in
O(20,Q2). By the Serre–Chebotarev density theorem, the conjugacy classes
of the Frobenius elements Frobx associated to closed points x in B are
equidistributed in π1B [26, Theorem 7]. Moreover, the closed points with residue
field of prime order have density 1 among all closed points. (Closed points are
counted with respect to the order of their residue field, and in this sense those of
order pr with r ≥ 2 are rare.) Therefore, the images of the Frobenius elements
Frobx associated to closed points x of B with residue field of prime order are
Zariski dense in O(20,Q2).

By the Weil conjectures (Deligne’s theorem), the characteristic polynomial of
any Frobenius element Frobx on H2((Sx)Fp,Q2(1)) has rational coefficients [8].
So all eigenvalues are algebraic numbers of degree at most 20 over Q. The set S
of roots of unity of degree at most 20 over Q is finite. So the locus in SO(20,Q2)

of elements with an eigenvalue in S is Zariski closed and not the whole group.
Therefore, the previous paragraph’s Zariski density statement gives that there is a
closed point x ∈ B such that the residue field has prime order p and no eigenvalues
of ρ(Frobx) on the vanishing cohomology in H2(SFp,Q2(1)) are roots of unity. It
follows that the fiber over x is a quartic surface SFp over Fp with one node which
has geometric Picard number 1.

By the Lefschetz hyperplane theorem, coker(H2(P3
Fp
,Z2(1)) → H2(SFp,

Z2(1))) is torsion free [21, Theorem 7.1]. The first group is generated by O(1).
We know that the image of Pic(SFp) in étale cohomology is contained in the
Q-line spanned by O(1), and this torsion freeness implies that the image of
Pic(SFp) in étale cohomology is the Z-line spanned by O(1). Therefore, every
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curve in SFp has degree a multiple of 4. So the 3-fold XFp = SFp × P1 with the
very ample line bundle L= π∗1 O(1)⊗ π∗2 O(4) has the property that every curve
C on XFp has L ·C ≡ 0 (mod 4). We have arranged that the 3-fold XFp ⊂ PN has a
projection to P4, defined over Fp, which is a morphism that is (set-theoretically)
2-to-1 at most in dimension two, 3-to-1 at most in dimension one, and 4-to-1
or worse at most in dimension zero. Therefore, the image of this projection is a
singular hypersurface Y of degree 48 in P4 over Fp such that every curve in YFp

has even degree.
It follows that any smooth hypersurface of degree 48 in P4 over Q that

specializes to Y over Fp has every curve of even degree. Since Y is defined over
Fp, this applies to a Zariski-dense set of smooth hypersurfaces over Q. �

6. Abelian 3-folds

As discussed in Section 2, Griffiths and Harris conjectured that every curve
in a very general complex 3-fold of degree d ≥ 6 in P4 has degree a multiple of
d. The best result towards Griffiths and Harris’s conjecture for hypersurfaces of
high degree is due to Debarre et al. [7]. Namely, for every odd k at least 9, if X
is a very general complex hypersurface of degree 6k, then every curve on X has
degree divisible by k. We produce hypersurfaces over the rational numbers with
similar properties.

THEOREM 6.1. For any integer k prime to 6 and at least 38, there is a smooth
hypersurface X of degree 6k in P4 over Q such that every curve in XQ has degree
divisible by k. The set of such hypersurfaces over Q is Zariski dense in the space
of all hypersurfaces of degree 6k.

Debarre, Hulek, and Spandaw’s method combines Kollár’s lemma with
the fact that a very general (1, 1, k)-polarized complex abelian 3-fold has
Picard number 1. In order to apply Lemma 4.1, we would like to find a
(1, 1, k)-polarized abelian 3-fold over Fp with Picard number 1, but in fact
every abelian variety of dimension g over Fp has Picard number at least g, as
a consequence of Tate’s theorem that every abelian variety over Fp is of complex
multiplication type [29]. We can get around the problem at the cost of the slightly
weakened statement in Theorem 6.1.

Proof. We use a special case of Kollár’s refinement of Angehrn and Siu’s
effective basepoint-freeness theorem. Let X be a smooth complex projective
3-fold with an ample line bundle L. Suppose that L ·C ≥ 38 for every curve C on
X, L2
·S ≥ 76 for every surface S on X, and L3

≥ 218. Then the line bundle KX⊗L
is basepoint free, and the associated morphism X→ PN is injective [18, Theorem
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5.9]. The results available today would require stronger assumptions in order to
make the derivative of this morphism injective, but we will not need that.

By definition, an ample line bundle L on an abelian 3-fold X gives a
(1, 1, k)-polarization if the associated homomorphism X→ X̂ = Pic0(X), x 7→
t∗x L⊗L−1, has kernel isomorphic to (Z/k)2 [3, Section 3.1]. Such a line bundle has
L3
= 6k. It follows that, for all k ≥ 38, if (X,L) is a (1, 1, k)-polarized complex

abelian 3-fold such that every curve C on X has L · C ≡ 0 (mod k) and every
surface S on X has L2

·S≡ 0 (mod 2k), then L is basepoint free and the associated
morphism X→ PN is injective. A very general (1, 1, k)-polarized abelian 3-fold
satisfies these and even stronger properties; for example, L · C ≡ 0 (mod 3k) for
every curve C on X [16]. For our application to abelian 3-folds over finite fields,
however, we have to consider a special class of abelian 3-folds.

Let E1,E2,E3 be elliptic curves, and let εj be a point of order k on Ej for
j = 1, 2, 3. Let X = (E1 × E2 × E3)/(Z/k)2 be the quotient by the subgroup
generated by εj− εk for 1≤ i< j≤ 3. By Debarre, Hulek, and Spandaw, there is
an ample line bundle L of type (1, 1, k) on X whose pullback to E1 × E2 × E3 is
π∗1 O(k[0])⊗ π∗2 O(k[0])⊗ π∗3 O(k[0]) [7, proof of Proposition 2].

For very general complex elliptic curves Ei, A := E1 × E2 × E3 has Picard
number 3, with Néron–Severi group generated by the divisors 0 × E2 × E3,
E1 × 0 × E3, and E1 × E2 × 0. It follows that the subgroup of Hodge classes
in H2(E1 × E2 × E3,Z) also has rank three, spanned by the curves E1 × 0 × 0,
0× E2 × 0, and 0× 0× E3. It also follows that X has Picard number 3, and we
can compute the group N1(X)∼= Z3 of Hodge classes in H2(X,Z). For a suitable
basis x1, y1, x2, y2, x3, y3 for H1(A,Z) coming from the product decomposition
A = E1 × E2 × E3, the isogeny π : A→ X makes π∗: H1(X,Z)→ H1(A,Z)
injective with image spanned over Z by x1, ky1, x2, ky2, x3, y1 + y2 + y3. Since
Hj(A,Z) = ΛjH1(A,Z) and likewise for X, we can compute Hj(X,Z) as a
subgroup of Hj(A,Z) for each j. In particular, the Néron–Severi group N1(A)
is spanned by x1 ∧ y1, x2 ∧ y2, x3 ∧ y3, and we read off that N1(X) is spanned
by k(x1 ∧ y1), k(x2 ∧ y2), k(x3 ∧ y3). In particular, L ∈ N1(X) pulls back to
k(x1 ∧ y1)+ k(x2 ∧ y2)+ k(x3 ∧ y3).

The pushforward map π∗: H2(A,Z)→ H2(X,Z) is dual to π∗: H2(X,Z)→
H2(A,Z), and so it can also be computed explicitly. In particular, we find that π∗
gives an isomorphism from the Hodge classes in H2(A,Z) to the Hodge classes
in H2(X,Z). It follows that every curve C on X has L ·C ≡ 0 (mod k). Likewise,
using that

L2
= 2k2(x1 ∧ y1 ∧ x2 ∧ y2 + x1 ∧ y1 ∧ x3 ∧ y3 + x2 ∧ y2 ∧ x3 ∧ y3),
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together with the calculation that N1(X) = Z{k(x1 ∧ y1), k(x2 ∧ y2), k(x3 ∧ y3)}

and the fact that A→ X has degree k2, we have L2
· S ≡ 0 (mod 2k) for every

surface S on X.
By the basepoint-freeness results mentioned earlier, these congruences imply

that, for k ≥ 38 and very general complex elliptic curves E1,E2,E3, the
(1, 1, k)-polarized abelian 3-fold (X,L) with X = (E1 × E2 × E3)/(Z/k)2 has
L basepoint free, and the resulting morphism to projective space is injective.
The conclusion is a Zariski open condition, and so the same conclusion holds for
general (rather than very general) complex elliptic curves E1,E2,E3.

Let Y1(k) be the moduli scheme over Z[1/k] of elliptic curves with a
point of order k, and let E → Y1(k) be the corresponding universal family
[15, Corollary 2.7.3, Theorem 3.7.1, Corollary 4.7.1]. Let B be the fiber product
Y1(k)3 over Z. Then we have a family A→ B of abelian 3-folds with fibers of the
form E1×E2×E3. Using the given points of order k on E1,E2,E3, we also have
a family X→ B of abelian 3-folds with (1, 1, k)-polarization L, where the fibers
are of the form (E1 × E2 × E3)/(Z/k)2.

Let XQ(B) be the generic fiber of X→ B, which is an abelian 3-fold over the
function field Q(B). By our work over C, for k ≥ 38, L is basepoint free on
XQ(B), of degree L3

= 6k, and the associated morphism XQ(B)→ PN is injective.
By Lemma 4.3, applying a general projection to P4 gives a morphism XQ(B)→ P4

that is (set-theoretically over Q(B)) 2-to-1 at most in dimension two, 3-to-1 at
most in dimension one, and 4-to-1 or worse at most in dimension zero. We can
view this morphism as a rational map X 99K P4

B over B. After replacing B by some
nonempty open subset, we have a morphism X→ P4

B over B which is 2-to-1 at
most in dimension two, and so on, over every point of B.

Let l be a prime number. The arithmetic fundamental group π1B (with a base
point in B(Q)) acts on H1(AQ,Zl) ∼= Z6

l . Here, H1(AQ,Ql) = H1(E1 × E2 ×

E3,Ql)= V1⊕V2⊕V3, where Vi is the standard representation of the ith copy of
GL(2,Ql). As a representation of π1B, all three representations Vi have the same
determinant Ql(−1), by Poincaré duality. Because the geometric fundamental
group π1BQ is Zariski dense in SL(2,Ql)

3, the arithmetic fundamental group π1B
is Zariski dense in the algebraic group G= Gm · SL(2)3 over Ql. Next, consider
the representation

H2(AQ,Ql(1)) ∼= (Λ2H1(AQ,Ql))(1)

∼= (Ql)
3
⊕ (V1 ⊗ V2)(1)⊕ (V1 ⊗ V3)(1)⊕ (V2 ⊗ V3)(1). (6.1)

Most elements of G(Ql) have no eigenvalues which are roots of unity on
(Vi ⊗ Vj)(1), for i 6= j in {1, 2, 3}. Using the Serre–Chebotarev equidistribution
theorem as in the proof of Lemma 5.1, it follows that there is a closed point x
of B with residue field of prime order such that the corresponding abelian 3-fold
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AFp = E1×E2×E3 has geometric Picard number 3. Thus there are elliptic curves
E1,E2,E3 over Fp such that the abelian 3-fold X = (E1 × E2 × E3)/(Z/k)2 has
Picard number 3 over Fp, while (by our shrinking of the base space B) a sublinear
system of the (1, 1, k)-polarization |L| gives a morphism X→ P4 over Fp which
is (set-theoretically over Fp) 2-to-1 at most in dimension two, 3-to-1 at most in
dimension one, and 4-to-1 or worse at most in dimension zero.

We have L3
= 6k. By the description of the pullback map H∗(X,Zl) →

H∗(A,Zl) given earlier in the case of complex abelian 3-folds, which we apply
for the prime factors l of k, it follows from X having geometric Picard number
3 that every curve C on XFp has L · C ≡ 0 (mod k). Let Y be the singular
hypersurface of degree 6k in P4 over Fp which is the image of X. Then
every curve C in YFp satisfies 6 deg(C) ≡ 0 (mod k). Therefore, every smooth

hypersurface X of degree 6k in P4 over Q that specializes to YFp has the property
that every curve C in X satisfies 6 deg(C) ≡ 0 (mod k). Since Y is defined over
Fp, this applies to a Zariski-dense set of hypersurfaces of degree 6k over Q. In
the special case where k is prime to 6, the statement that 6 deg(C) ≡ 0 (mod k)
implies that deg(C)≡ 0 (mod k). �
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