Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:55:00.672Z Has data issue: false hasContentIssue false

Swelling of SiO2 Quartz Induced by Energetic Heavy Ions

Published online by Cambridge University Press:  10 February 2011

C. Trautmann
Affiliation:
Gesellschaft fuir Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany, C.Trautmann@gsi.de
J. M. Costantini
Affiliation:
DPTA/PMC, BP 12, 91680 Bruyères-Le-Châtel, France
A. Meftah
Affiliation:
ENSET, BP 26 Merj-eddib, 21000 Skikda, Algeria
K. Schwartz
Affiliation:
Gesellschaft fuir Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany, C.Trautmann@gsi.de
J. P. Stoquert
Affiliation:
Laboratoire PHASE, 67037 Strasbourg - cedex 2, France
M. Toulemonde
Affiliation:
CIRIL, Laboratoire commun CEA/CNRS, BP 5133, 14070 Caen-cedex 5, France
Get access

Abstract

A pronounced swelling effect occurs when irradiating SiO2 quartz with heavy ions (F, S, Cu, Kr, Xe, Ta, and Pb) in the electronic energy loss regime. Using a profilometer, the out-of-plane swelling was measured by scanning over the border line between an irradiated and a virgin area of the sample surface. The step height varied between 20 and 300 nm depending on the fluence, the electronic energy loss and the total range of the ions. From complementary Rutherford backscattering experiments under channelling condition (RBS-C), the damage fraction and corresponding track radii were extracted. Normalising the step height per incoming ion and by the projected range, a critical energy loss of 1.8 ± 0.5 keV/nm was found which is in good agreement with the threshold observed by RBS-C. Swelling can be explained by the amorphisation induced along the ion trajectories. The experimental results in quartz are compared to swelling data obtained under similar irradiation conditions in LiNbO3

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Balzer, R., Peisl, H. and Waidelich, W., Phys. Stat. Sol. 15, p. 495 (1966).Google Scholar
2. Agullo-Lopez, F., Catlow, C.A.R. and Townsend, P. D., in Point defects in Materials, Academic Press, pp. 149 (1988).Google Scholar
3. Douillard, L. and Duraud, J. P., J. Phys. III France 6, p. 1677 (1996).Google Scholar
4. Chan, S.L., Gladden, L.F. and Elliott, S.R., in Physics and Technology of Amorphous SiO2 , edited by Devine, R.A.B., Plenum Press, pp. 83 (1987).Google Scholar
5. Clinard, F.W. (Guest Editor) MRS Bulletin 22, N°4 (1997).Google Scholar
6. Bilington, D.S. and Crawford, J.H., in Radiation Damage in Solids, Princeton University Press, Princeton (1961).Google Scholar
7. Douillard, L., Jollet, F., Duraud, J.P., Devine, R.A.B. and Dooryhee, E., Rad. Eff. Def. Sol. 124, p. 351 (1992).Google Scholar
8. Primak, W., Phys. Rev. B 14, p. 46 79 (1976).Google Scholar
9. Brenier, R., Canut, B., Ramos, S.M.M. and Thdvenard, P., Nucl. Instr. Meth. Phys. Res. B 90, p. 339 (1994).Google Scholar
10. Canut, B., Brenier, R., Meftah, A., Moretti, P., Salem, S. Ould, Ramos, S.M.M., Thévenard, P. and Toulemonde, M., Nucl. Instr. Meth. Phys. Res. B 91, p. 312 (1994)Google Scholar
11. Canut, B., Ramos, S.M.M., Brenier, R., Thévenard, P., Loubet, J.L. and Toulemonde, M., Nucl. Instr. Meth. Phys. Res. B 107, p. 194 (1996).Google Scholar
12. Ramos, S.M.M., Canut, B., Ambri, M., Clement, C., Dooryhee, E., Pitival, M., Thévenard, P. and Toulemonde, M., Nucl. Instr. Meth. Phys. Res. B 107, p. 254 (1996).Google Scholar
13. Fleischer, R.L., Price, P.B. and Walker, R.M., Nuclear Tracks in Solids: Principles and Applications, University of California, Berkeley, (1975).Google Scholar
14. Meftah, A., Brisard, F., Costantini, J.M., Dooryhee, E., Hage-Ali, M., Hervieu, M., Stoquert, J.P., Studer, F. and Toulemonde, M., Phys. Rev. B 49, p. 12457 (1994).Google Scholar
15. Toulemonde, M., Costantini, J.M., Dufour, Ch., Meftah, A., Paumier, E., and Studer, F., Nucl. Instr. Meth. Phys. Res. B 116, p. 37 (1996).Google Scholar
16. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F. and Toulemonde, M., Phys. Rev. B 48, p. 920 (1993).Google Scholar
17. Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Meth. 174, p. 257 (1980).Google Scholar