Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-19T18:39:54.259Z Has data issue: false hasContentIssue false

Effect of Processing Parameters on the Chemistry of Magnetron Sputtered Ti-Al Thin Films

Published online by Cambridge University Press:  10 February 2011

A. S. Kale
Affiliation:
Advanced Materials Processing Analysis Center (AMPAC), Mechanical Materials and Aerospace Engineering Department (MMAE)
J S. Seal
Affiliation:
Advanced Materials Processing Analysis Center (AMPAC), Mechanical Materials and Aerospace Engineering Department (MMAE)
K. Beaulieu
Affiliation:
Advanced Materials Processing Analysis Center (AMPAC), Mechanical Materials and Aerospace Engineering Department (MMAE)
K. B. Sundaram
Affiliation:
Department of Electrical and Computer Engineering (ECE), University of Central Florida, Orlando, FL 32816, USA
Get access

Abstract

Titanium-aluminum alloys are proved to be a viable candidate material in the field of structural coatings due to their high temperature creep and oxidation resistance in addition to being a lightweight material. In the present paper, we study the effect of applied power on the mechanical properties and surface chemistry of dc-magnetron sputtered Ti3AI thin films. While SEM and XRD investigate the structure and morphology of the deposited films, XPS and AES proved to be an essential tool for studying the surface chemistry and detailed chemical bonding information of the Ti3AI thin films. Glancing angle XPS and Auger depth profiling were carried out to study the chemistry at a few layers beneath the surface to monitor the changes in the stoichiometry of Ti3AI films. Microhardness measurements indicate an increase in the thin film hardness with increased sputtering power. These data were further compared to thin films deposited under liquid N2 temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohring, M., The Materials Science of Thin Films, (Academic Press, San Diego, CA), 1991.Google Scholar
2. Smith, D., Thin Film deposition: Principles and Practice, (McGraw Hill, NY), 1995.Google Scholar
3. Glang, R., in Handbook of Thin Film Technology, edited by Maissel, L. I. and Glang, R., (McGraw-Hill, New York), 1970.Google Scholar
4. Brewer, W. D., Bird, R. K., Wallace, T. A., Mat. Sci. Eng. A, 243, 299 (1998).Google Scholar
5. Kohlase, A., Mandl, M. and Palmer, W., J. Appl. Phys. 65, 2464 (1989).Google Scholar
6. Wang, S. Q., Raaijmakers, I., Burrow, B. J., Suthar, S., Redkar, S. and Kim, K. B., J. Appl. Phys, 68, 5176 (1990).Google Scholar
7. Sastry, S. M. L. and Lipsitt, H. A., Metal.Trans A, 8, 299 (1977).Google Scholar
8. McAndrew, J. B. and Kessler, H. D., J. Met, 8, 1348 (1956).Google Scholar
9. Barr, T. L. and Seal, S., J. Vac. Sci. Tech. A 13, 1239 (1995).Google Scholar
10. Sherwood, P. M. A., In Practical Surface Analysis by Auger and Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M. P., (Wiley, London 1983), 445.Google Scholar
11. Sherwood, P. M. A, In Data analysis in XPS and AES in Practical Electron Spectroscopy, edited by Briggs, D. and Seah, M. P., (Wiley, New York 1990), Appendix 3, 555.Google Scholar
12. Messier, R., Giri, A. P. and Roy, R., J. Vac. Sci. Tech. A2, 500 (1984).Google Scholar
13. Steiner, P. and Hufner, S., Acta. Metall. 29, 1885 (1981).Google Scholar
14. Steiner, P., Hugner, S., Martensson, N. and Johansson, B., Solid State Comm. 37, 73 (1981).Google Scholar
15. Seal, S., Barr, T. L., Sobczak, N.. Kerber, S. J., J. Mat. Sci., 33, 4147 (1998).Google Scholar
16. Liu, S., Hu, R. and Wang, C., J. Appl. Phys. 74(5), 3204 (1993).Google Scholar
17. Seal, S., Warwick, T., Garcia, A., Ade, H., Denlinger, J., Tonner, B., Barr, T. L., Sobczak, N., in Proceedings High Temperature Capillarity, edited by N. Eustathopolous and N. Sobczak, 1998, 203.Google Scholar
18. Barr, T. L., Seal, S., Chen, L. M., Kao, C. C., Thin Solid Films, 253, 277 (1994).Google Scholar
19. Liau, Z. L., Tsaur, B. Y. and Mayer, J. W., J. Vac. Sci. Tech. 16, 121 (1979).Google Scholar
20. Matthew, H. J. and Landolt, D., Surf. Sci. 53, 228 (1975).Google Scholar
21. Ho, P. S., Lewis, J. E., Wildman, H. S. and Howard, J. K., Surf. Sci. 57, 393 (1976).Google Scholar
22. Shimizu, H., Ono, M. and Nakayana, K., Surf. Sci. 36, 817 (1973).Google Scholar
23. Zalm, P. C., Surf Int. Anal. 11, 1 (1988).Google Scholar