Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T07:55:46.888Z Has data issue: false hasContentIssue false

MOCVD AlGaN/GaN HFET's Material Optimization and Devices Characterization

Published online by Cambridge University Press:  01 February 2011

Alexander Demchuk
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449, U.S.A.
Don Olson
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449, U.S.A.
Dan Olson
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449, U.S.A.
Minseub Shin
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449, U.S.A.
Gordon Munns
Affiliation:
APA Optics, Inc., 2950 NE 84th Lane, Blaine, MN 55449, U.S.A.
Get access

Abstract

An optimization of growth parameters of AlxGa1*xN/AlN/GaN heterostructure field effect transistors (HFET) grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique on SiC and sapphire substrates with relatively high Al mole fraction in the barrier layer (0.3 < x < 0.5) has been presented. The properties of the two-dimensional electron gas (2DEG) forming at the AlxGa1-xN/GaN heterojunction can be tuned by careful adjustments of AlxGa1-xN barrier layer thickness and Al mole fraction, x. The 2DEG sheet conductivities (μ ns) as high as 2.6 × 1016 V-1s-1 at μ ∼ 2200 cm2/Vs and ns ∼ 1.2 × 1013 cm-2 has been achieved on AlxGa1-xN/AlN/GaN HFET structures on SiC substrate at x = 0.47. HFET devices processed on these structures exhibited improved low field conductivities and DC and high frequency performance. Saturation currents above 1.2 A/mm at 0 V gate bias, transconductance as high as 340 mS/mm at Lg = 0.25 μm and FT × Lg > 20 GHz × μm were demonstrated on HFET structure grown on SiC substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M. A., Bhattarai, A., Kuznia, J. N. and Olson, D. T., Appl. Phys. Lett., 63, 1214 (1993).Google Scholar
2. Wu, Y. –F., Kapolnek, D., Ibvbetson, J. P., Parikh, P., Keller, B. P. and Mishra, U. K., IEEE Electron Device Lett. 48, 586 (2001).Google Scholar
3. Zhang, Y. and Singh, J., J. Appl. Phys. 85, 587 (1999).Google Scholar
4. Keller, S., Parish, G., Fini, P. T., Heikman, S., Chen, C.-H., Zhang, N., DenBaars, S. P., Mishra, U. K. and Wu, Y.-F., J. Appl. Phys. 86, 5850 (1999).Google Scholar
5. Smorchkova, I. P., Chen, L., Mates, T., Chen, L., Heikman, S., Moran, B., Keller, S., DenBaars, S. P., Speck, J. S. and Mishra, U. K., J. Appl. Phys. 90, 5196 (2001).Google Scholar
6. Khan, M. A., Kuznia, J. N., Van Hove, J. M., Olson, D. T., Krishnankutty, S. and Kolbas, R. M., Appl. Phys. Lett. 58, 526 (1991).Google Scholar
7. Demchuk, A., Don, Olson, Shin, M., Dan, Olson, Nussbaum, P., Strom, A., Bates, S., Hofmann, F. and Munns, G., Mat. Res. Soc. Symp. Proc. 743, 543 (2003).Google Scholar