Guest Editorial # Twin Registries Worldwide: An Important Resource for Scientific Research Yoon-Mi Hur¹ and Jeffrey M. Craig² Twins can provide unique opportunities to study causal influences on variation in human behaviors, development, and diseases. During the past 10 years, the number of twin registries has increased rapidly across the globe and we thought it timely to bring these to the attention of our readership. In this special issue, we invited papers on twin registries and cohorts from 28 countries representing five continents. Subjects covered include how to establish and maintain twin registries, accurately assess zygosity, collect biospecimens, and other important issues related to twin studies. This special issue shows that over 1.5 million twins and their families are participating in twin studies worldwide. Research interests will be highlighted, with the aim of fostering collaborative research. ■ **Keywords:** twin registry, epidemiology, zygosity, gene environment interaction, epigenetics, common diseases Welcome to the special issue of Twin Research and Human Genetics on 'Twin Registries Worldwide: An Important Resource for Scientific Research'. The twin method can be traced back to Galton's (1876) assertion that twins can help tease out effects of genes and environment. It is now well recognized in the scientific community that twins are powerful and flexible tools to achieve understanding of the biological substrate of complex human diseases and behaviors. The twin method was traditionally used to estimate heritability, and has now evolved to locate genetic variants that explain heritability, and to study the regulation of gene expression, including epigenetic modifications on the genetic material, cellular processes involving metabolites, the human microbiome, and pharmacogenomics for human variations in response to medications. At the same time, as indicated in this special issue, many twin researchers have also begun to search specific environmental sources of phenotypic variation that interact with genetic factors. Twin pairs discordant for diseases and behaviors and the quantitative genetic method with structural equation modeling techniques are especially useful to detect these environmental sources. The paradigm of twin studies is now being shifted toward understanding of how macro- and micro-environmental factors interplay with complex biological processes. In 2002, when Twin Research published its first special twins cohort issue (Busjahn, 2002), 36 papers were included. As it became apparent that twin research was continuing to expand, another special issue was published in 2006 (Busjahn & Hur, 2006), which included 53 papers. In the current issue we are able to collect 71 papers in total. Therefore, this would indicate that the number of twin research cohorts has almost doubled during the past 10 years (Figure 1). The number of countries involved in twin research has also increased; the 2002 issue presented data from 16 countries, which increased to 20 in 2006, and in this issue it has increased to 28 countries (Figure 2). These figures assure us that twin research is a fast-growing field of science across the globe. Traditionally, it has been suggested that twin studies limit their conclusions to explanation of variation within a population (Plomin et al., 2001). However, as many twin registries in this issue are either multinational or are inviting international collaborations, twin analyses are starting to move beyond within-population analyses (Figure 2 and RECEIVED 28 November 2012; ACCEPTED 3 December 2012. ADDRESS FOR CORRESPONDENCE: Yoon-Mi Hur, Mokpo National University, Jeonnam, South Korea. E-mail: ymhur@mokpo.ac.kr ¹Industry-Academy Cooperation Foundation, Mokpo National University, South Korea ²Early Life Epigenetics Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia FIGURE 1 Number of papers in the three special issues on twin registers in the world published in Twin Research (2002) and Twin Research and Human Genetics (2006 and 2013). Table 1). This special issue is a comprehensive coverage of currently active twin cohorts around the world. While many of the papers in this issue have updated their previous articles published in the 2002 and/or 2006 special issues, describing the progress they have made, new twin registries that have emerged during recent years have also been included in this issue. ## **New Twin Registries** The Cuban Twin Registry is a nationwide, population-based registry consisting of approximately 58,000 pairs of twins who were identified through the National Citizen Identity Registry. This twin registry is almost free of ascertainment bias as it includes over 99.9% of all twins available from the total population in Cuba. Undoubtedly, this registry is a powerful resource to study genetic and environmental etiologies of complex diseases in the Cuban population. The successful construction of the registry appears largely due to the efforts of door-to-door visits and in-person interviews that the investigators made, as well as the support of the Cuban government. A nationwide, representative school-aged twin registry is currently being developed in the Russian Federation and the Kyrgyz Republic. Utilizing 50,000 school rosters across the country, the investigators are forming a registry of over 100,000 twins aged 7 to 18 years with a general aim to resolve the issues of gene—environment interactions for the development of school achievement and related traits. The investigators also seek international collaborations to use this huge resource to study cross-cultural comparisons on education-related traits. New registries in two African countries, Guinea-Bissau and Nigeria, are also notable. Although both registries aim to study children and adolescent twins, the ascertainment schemes of the two registries are different. Whereas the Guinea-Bissau Twin Registry collects twin data mainly from hospitals, focusing on diseases and related traits, the Nigerian Twin and Sibling Registry recruits twins largely from schools, and its primarily interests are psychological and mental health variables. As Africans are known to have the highest twin birth rate in the world (Bulmer, 1970), these two registers are likely to increase their sample size rapidly, which will provide new opportunities to study complex human behaviors and disease traits of Africans living in extremely deprived environments. This issue also presents a brief history and initial findings of the Hungarian, Portugese, and Turkish twin registries in Europe. Although these three registries started with small regional samples and meager financial resources, they are being extended to the whole country. In Asia, nationwide twin registries are being established in Malaysia, Mongolia, and Thailand. The progress and research interests of these three registries are also briefly described in this issue. We have also included many new twin registries from the United States. For example, the Arizona Twin Registry, which was developed from 600 young twins ascertained from birth records in the state of Arizona, offers a new resource to explore interesting questions of how early competency and resilience develop and moderate genetic and environmental risk factors for childhood physical and mental health problems. The Boston University Twin Project (BUTP) is also a new longitudinal study of young twins recruited from birth records of the state of Massachusetts. The target phenotypes of the BUTP are childhood temperament and behavior problems, with specific focus on activity level. The unique feature of the BUTP is the use of multiple mechanical measures to assess phenotypes across multiple contexts. These measurement strategies are important because they can help increase generality of the findings, as TWIN RESEARCH AND HUMAN GENETICS FEBRUARY 2013 FIGURE 2 Location of twin studies featured in this issue. Each study is shown as a double star. 4 Yoon-Mi Hur and Jeffrey M. Craig **TABLE 1**An Overview of Twin Registries Worldwide | Country | Name of twin
registry (or
running title) | Name of the
first author
(corresponding
author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens/
DNA
collected? | |-----------|--|---|---------------------------------|---|--------------------------------|---------------------|---|---|--|------------------------------------| | Australia | Australian Twin
Registry (ATR) | John Hopper
et al. | National | 40,000 twin pairs | All ages | Yes | Media, Australian
Multiple Birth
Association
(AMBA), hospitals | Multiple aspects of
health, disease, risk
factors, behavior
and lifestyle | DNA, Q | Yes | | Australia | Teeth and Faces
of Twins | Toby Hughes
et al. (Grant
Townsend) | National | 1,293 twin pairs
and 2,258
family members | All ages | Yes | ATR, AMBA,
newspapers,
hospitals, and
prenatal exercise
classes | Dental development
and oral health | DNA | Yes | | Australia | Australian Twins
and
Ophthalmic
Traits | Maria Schache
and Paul
Baird (Maria
Schache) | National | 1,563 twin pairs | 5 years to adults | No | ATR, previous studies,
media,
word-of-mouth | Eye diseases,
ophthalmic traits | DNA, Q | Yes | | Australia | The Brisbane
Longitudinal
Twin Study | Nathan
Gillespie
et al. | Brisbane | 3,408 twins and
their 1,572
siblings | 12–21 years | Yes | Media, word of mouth | Substance (Cannabis)
use, mood, anxiety,
psychosis | DNA, Q | Yes | | Australia | The Peri/postnatal Epigenetic Twins Study (PETS) | Yuk Jing Loke
et al. (Jeffrey
Craig) | Melbourne | 250 twin pairs & their mothers | 3–5 years | Yes | Hospitals | Epigenetic associations of pre-, peri-, and postnatal health and related traits | DNA, Chori-
onicity | Yes | | Belgium | The East
Flanders
Prospective
Twin Survey | Catherine
Derom et al. | Province of
East
Flanders | 8,800 twin pairs
and 240 triplet
sets | 0–48 years | Yes | Birth records | Peri- and prenatal
conditions,
placenta, postnatal
health, and
behaviors | DNA, chori-
onicity, and
blood type | Yes | | Canada | The University of
British
Columbia
Twin Project | Kerry Jang | Greater
Vancouver
Area | Approximately 2,000 twin pairs | 18–84 years | No | Media | Psychological and psychiatric traits | Q | No | | Canada | The Quebec
Newborn Twin
Study | Michel Boivin
et al. | Greater
Montreal
Area | 662 twin pairs | 5 months to 16
years | Yes | Birth records | Behavioral, social and
cognitive
development, and
developmental
health | DNA, Q, and chorionicity | Yes | | China | The Chinese
National Twin
Registry | Liming Li et al. | National | 35,000 twin pairs | All ages | Yes | Center for Disease
Control and
Prevention | Medical history,
anthropometric
measures,
biochemical
measurements, life
style | DNA, Q | Yes | | China | The Beijing Twin
Study | Jie Chen et al.
(Xinying Li) | Beijing | 1,387 twin pairs | 10–18 years | Yes | Schools | Psychopathology | DNA, Q | Yes | | China | The Guangzhou
Twin Project | Yingfeng Zheng
(Mingguang
He) | Greater
Guangzhou
area | Over 1,200 twin pairs and their family members | 7–15 years | Yes | The Official Household
Registry of
Guangzhou City | Eye diseases,
ophthalmic traits,
and lifestyle | DNA, Q | Yes | TWIN RESEARCH AND HUMAN GENETICS FEBRUARY 2013 TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the
first author
(corresponding
author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens,
DNA
collected? | |---------|--|---|---------------------------------------|--|--------------------------------|---|---|---|--|------------------------------------| | China | The Qingdao
Twin Registry | Haiping Duan
et al.
(Zengchang
Pang) | Qingdao City,
Shandong
Province | 10,559 twin pairs | All ages | Yes | Immunization registry
for newborns, the
tertiary prevention
and health system,
schools, and media | Anthropometric
measurements,
biochemical
measurements, and
health | DNA, and
blood type | Yes | | Cuba | The Cuban Twin
Registry | Marcheco
Teruel et al. | National | 58,000 twin pairs | All ages | Yes | National citizen identity registry | Birth defects, common
diseases, substance
use/abuse, cancer,
and mental
disorders | DNA, Q | Yes | | Denmark | The Danish Twin
Registry | Axel Skytthe
et al. (Kaare
Christensen) | National | 86,398 twin pairs | All ages | Yes | Birth registers,
population
registers, and
medical birth
registers | Health, diseases,
survival, cognition,
behavior,
development, and
aging | DNA, Q | Yes | | England | G1219: A UK
Twin Study | Tom McAdams
et al. | National | 1,381 twin pairs
and 445 sibling
pairs | 12–19 years | Yes | Birth records, and
participants of the
previous study | Depression, anxiety,
anxiety sensitivity,
delinquent
behaviors, sleep,
and environmental
experiences | DNA, Q | Yes | | England | Twins Early
Development
Study | Claire Haworth
et al. (Robert
Plomin) | National | 16,810 twin pairs | 2–18 years | Yes | Birth records | Cognitive and behavioral development | DNA, Q | Yes | | England | The UK Adult
Twin Registry | Alireza
Moayyeri
(Tim Spector) | National | Approximately
12,000 twins | 18–103 years | Yes | Media | Aging, complex
diseases, and omics
studies | DNA, Q | Yes | | England | The Northern
Survey of Twin
and Multiple
Pregnancy
(NorSTAMP) | Svetlana V
Glinianaia
et al. | North East
England | 8,358 twin pairs
and 226 sets of
higher order
multiples | 0-14 years | Yes (a
prospective
survey;
about 500
pregnancy
data are
added each
year) | Recorded from the
first antenatal scan
and birth records | Prenatal, perinatal
conditions, and
childhood health | Chorionicity | No | | Finland | The Genetics of
Sexuality and
Aggression
Twin Samples
in Finland | Ada Johansson
et al. | National | 10,624 twins and
their siblings | 18–49 years | Yes | The Population
Register Center of
Finland | Sexuality, aggression and related traits | DNA, Q | Yes | | Finland | The Finnish Twin
Cohort Study | Jaakko Kaprio | National | 105,149 twins and
their family
members | 10–100 year | Yes | The Population
Register Center of
Finland | Health and related
behaviors,
environment,
morbidity and
mortality | DNA, Q | Yes | 0 TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the first author (corresponding author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens,
DNA
collected? | |-------------------|--|--|-------------------------------|--|--|---------------------|---|---|--|------------------------------------| | Germany | The Bielefeld
Longitudinal
Study of Adult
Twins | Christian
Kandler et al. | National | 2,404 twins | 14–80 years | Yes | Media, twin club | Personality | Q | No | | Germany | Current twin
studies in
Germany | Elisabeth Hahn
et al. | National | Over 2,000 twin pairs | 7–76 years | Yes | The government registration office, and existing studies | Personality, circadian
rhythm, cognitive
ability, motivation,
and school
achievements | DNA, Q | Yes | | Germany | The Berlin Twin
Registry | Andreas
Busjahn | Berlin | 1,744 twin pairs | All ages | Yes | Media | Health and related traits | DNA, Q | Yes | | Guinea-
Bissau | The
Guinea-Bissau
Twin Registry | Morten
Bjerregaard-
Andersen
et al. | Bissau | 1,500 twins | 0–31 years | Yes | Hospital, demographic surveillance sites | Infections,
malnutrition,
diabetes, and
metabolic syndrome | Q | Yes | | Hungary | The Hungarian
Twin Registry | Levente Littvay
et al. | National | 310 twin pairs | 0–88 years | Yes | Twin meetings,
website, media, and
old volunteers
registry | Cardiovascular and
respiratory health,
psychological
variables | DNA, Q, and chorionicity | Yes | | Israel | The Longitudinal
Israeli Study
of Twins | Reut Avinun
and Ariel
Knafo | National | Approximately
1,500 twin pairs | 3–7 years | Yes | Birth records | Pro-social behaviors,
empathy,
temperament, and
parenting | DNA, Q | Yes | | Italy | The Italian Twin
Register | Sonia
Brescianini
et al. | National | 25,000 twins | All ages | Yes | Municipality records,
disease registries,
and hospitals | Perinatal conditions,
pediatric health
development,
mental health, and
aging | DNA, Q | Yes | | Japan | The Keio Twin
Research
Center | Juko Ando
et al. | National | Approximately 4,000 twin pairs | 3–26 years | Yes | Resident register | Psychological and environmental variables | DNA, Q | Yes | | Japan | The Osaka
University
Center for
Twin Research | Kazuo
Hayakawa
et al. | National | 12,000 twin pairs | 20–95 years
(mostly over
60 years) | Yes | School records | Diseases and related traits | DNA | Yes | | Japan | Japanese
Database of
Families with
Twins and
Higher Order
Multiples | Syuichi Ooki | National | About 5,000 twin
and multiple
families | 0–52 years | No | Twin mothers'
associations | Pre- and perinatal
conditions, and
childhood health | Q | No | | Japan | The West Japan
Twins and
Higher Order
Multiple Births
Registry | Yoshie
Yokoyama | Osaka,
Nishinomiya
City | 7,000 twins and
4,300 higher
order multiples | 0–35 years | Yes | Twin mothers' associations, hospitals, media, and public health centers | Risk of disabilities in
multiples, and
physical
development | Q | No | TWIN RESEARCH AND HUMAN GENETICS FEBRUARY 2013 TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the first author (corresponding author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens/
DNA collected? | |-------------------------|---|---|---|---|--------------------------------|----------------------------|--|--|--|---------------------------------| | Japan | Lifecourse
Database of
Twins | Syuichi Ooki | Tokyo
Metropoli-
tan
area | 2,167 pairs and
their family
members | 11–79 years | Yes | The secondary school
attached to the
University of Tokyo | Maternal obstetric
data, and growth
and development of
multiples | DNA, Q | No | | Korea | The South
Korean Twin
Registry | Yoon-Mi Hur
et al. | National | Approximately
10,000 pairs | <30 years | Yes | Schools, hospitals,
media, and
childcare agencies | Mental health,
personality, and
cognitive abilities | Q, chorionicity | Yes | | Korea | The Healthy
Twin Study | Bayasgalan
Gombojav
et al.
(Joohon
Sung) | National | 3,690 twins | 29 years≤ | Yes | Mailing based on population register | Complex traits and common diseases | DNA, Q | Yes | | Malaysia | Malaysian Twin
Registry | Shayesteh
Jahanfar | National | 470 twins | 15 years≤ | No | Hospitals, website, and schools | Reproductive health
and well-being | Q | No | | Mongolia | Mongolian Twin
Register | Bayasgalan
Gombojav
et al.
(Narandalai
Danshiit-
soodol) | National | 822 twins and
triplets | 1–81 years | Yes | Birth records | Complex traits and common diseases | Q | No | | The
Nether-
lands | The Young
Netherlands
Twin Register | Catharina E. M.
van
Beijsterveldt
et al. | National | 70,000 children
(mainly twins,
but also
siblings) and
their parents | <18 years | Yes, 25 Years
follow-up | Association for parents
of multiples,
commercial
organizations,
websites and social
media | Development,
phychopathology,
cognitive and brain
function, school
performance,
physical growth and
health | DNA, Q | Yes | | The
Nether-
lands | The Adult
Netherlands
Twin Register | Gonneke
Willemsen
et al. | National | 34,000 twins and
family members
(parents,
siblings and
spouses of
twins) | 18 years≤ | Yes, 25 years
follow-up | City council registers,
NTR newsletter,
media, websites
and social media | Physical and mental
health, lifestyle,
personality, fertility,
cognition and brain
function | DNA, Q | Yes | | The
Nether-
lands | The Twin Inter-
disciplinary
Neuroticism
Study | Harriëtte Riese
et al. | North of the
Nether-
lands | Approximately
800 twin pairs | 18–30 years | Yes | Birth records | Neuroticism,
psychophysiological
and cognitive
measures, and basic
blood tests | DNA, Q | Yes | | Nigeria | The Nigerian
Twin and
Sibling
Registry | Yoon-Mi Hur
et al. | National | 1,550 twins and siblings | <30 years | Yes | Schools | Mental health,
personality, and
cognitive abilities | DNA | Yes | | Norway | The Norwegian
Twin Registry | Thomas Nilsen
et al.
(Jennifer
Harris) | National | 47,989 twins | 18 years≤ | Yes | Medical Birth Registry,
National Population
Registry/Statistics
Norway | Physical health, mental
health, lifestyle, and
demographic
factors | DNA, Q | Yes | | Portugal | Twin Research in
Portugal | José Maia et al. | North of
mainland,
Azores and
Madeira
Islands | 1,542 twin pairs | 5–40 years | No | Schools, media
advertisement, city
halls, and twin
meetings | Physical activity,
physical fitness,
physical growth,
and metabolic
syndrome | DNA, Q | Yes | https://doi.org/10.1017/thg.2012.147 Published online by Cambridge University Press TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the first author (corresponding author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens/
DNA
collected? | |-----------|--|--|--------------------------|--|--------------------------------|---------------------|--|--|--|------------------------------------| | Russia | The Russian
School Twin
Registry | Yulia Kovas
et al. | National | Approximately
50,000 twin
pairs | 7–18 years | Yes | Schools | Cognition, emotion,
motivation,
achievement | DNA, Q | Yes | | Spain | The Murcia Twin
Registry | Juan R.
Ordoñana
et al. | Murcia | 2,281 twins and triplets | 40–67 years | Yes | Health records (Public
Health System) | Anthropometric,
health and health
promotion-related
traits | DNA, Q | Yes | | Sri Lanka | The Sri Lankan
Twin Registry | Athula
Sumathipala
et al. | National | 16,580 twin pairs
and 208 triplet
sets | All ages | Yes | Door-to door visit
survey, newsletters,
cultural activities,
media, birth records | Psychiatric disorders,
and metabolic
syndrome | DNA, Q | Yes | | Sweden | Study of
Dementia in
Swedish Twins | Margaret Gatz
and Nancy
Pedersen | National | 2,394 twins | 55 years≤ | Yes | Swedish
Adoption/Twin
Study of Aging | Dementia and its risk factors | DNA, Q | Yes | | Sweden | The Swedish
Twin Registry | Patrik
Magnusson
et al. | National | 194,000 twins | 9–106 years | Yes | The National Board of
Health and Welfare | Behaviors, diseases, and aging | DNA, Q | Yes | | Thailand | Thai Twin
Registry | Somsong
Nanakorn
et al. | Central and
Northeast | 212 twin pairs | 6–66 years | No | Schools and media | Dermatoglyphic variables | Q, blood type | No | | Turkey | Turkish Twin
Study | Sevgi Yurt
Öncel et al. | National | 618 twins | 15–69 years | No | Birth records | Smoking and related traits | Q | No | | USA | The National
Longitudinal
Study of
Adolescent
Health | Kathleen
Mullan Harris
et al. | National | 784 twin pairs and
2,355 sibling
pairs | 12–32 years | Yes | Schools | Health and behaviors | DNA, Q | Yes | | USA | The Project
TALENT Twin
and Sibling
Study | Carol Prescott
et al. | National | 88,000 siblings
and 2,500 twin
pairs | 14–29 years | Yes | Random sample of
U.S. high schools | Cognition and related traits | Photograph | No | | USA | The Early
Growth and
Development
Study | Leslie Leve
et al. | National | 561 sets of
families
(adoptee, birth
and adoptive
parents) | 0–9 years | Yes | Adoption agencies | Externalizing,
internalizing
behaviors, social
competence, school
performance,
physical growth, &
family environment | NA | Yes | | USA | Fullerton Virtual
Twin Study | Nancy Segal
et al. | National | 151 twin pairs | 4–54 years | No | Media, investigator's
website, and
publications | Cognitive abilities | NA | No | | USA | The Vietnam Era
Twin Registry | Melyssa Tsai
et al. (Alaina
Mori) | National | 7,369 male twin
pairs and their
family members | 51–59 years | Yes | The Department of
Defense and the
Department of
Veterans Affairs
(VA) database files | Mental health,
including PTSD,
body mass index,
diabetes,
cardiovascular
disease | DNA, Q | Yes | Yoon-Mi Hur and Jeffrey M. Craig TWIN RESEARCH AND HUMAN GENETICS FEBRUARY 2013 TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the
first author
(corresponding
author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens/
DNA collected | |---------|---|---|-------------------------------|---|--------------------------------|---------------------|--|---|--|--------------------------------| | USA | The Vietnam Era
Twin Study of
Aging | William Kremen
et al. | National | 1,237 twins | 51–59 years | Yes | The Department of Defense and the Department of Veterans Affairs (VA) database files | Cognitive and brain aging in men | DNA, Q | Yes | | USA | Arizona Twin
Project | Kathryn
Lemery-
Chalfant
et al. | Arizona | 600 twins | 12 months, 30
months | Yes | Birth records | Development of early
competence and
resilience to
common mental
and physical health
problems | Q, chorionicity | No | | USA | California Twin
Program | Wendy Cozen et al. | California | 36,965 twin pairs | 16 year< | Yes | Birth records linked to
DMV | Medical history,
lifestyle | Q | Yes | | USA | The Southern
California
Twin Register | Laura Baker
et al. | Southern
California | 782 sets of twins
and triplets (n
= 1,573
subjects) | 9–20 years | Yes | Schools, and voter records | Antisocial behaviors
and related traits | DNA, Q | Yes | | USA | The Twin
Research
Registry at SRI
International | Ruth Krasnow
et al. (Gary
Swan) | California (San
Francisco) | 3120 twins | All ages | Yes | Media | Drug metabolism,
mutagen sensitivity,
and human
immunological
responses | DNA, Q | Yes | | USA | The Carolina
African
American
Twin Study of
Aging | Keith Whitfield | North Carolina | 286 twin pairs, 31
sibling pairs, 72
co-twin missing
cases | 22–92 years | No | Birth records, and existing twin study | Mental and physical
health | DNA, Q | Yes | | USA | The Colorado
Twin Registry | Sally-Ann Rhea
et al. (Robin
Corley) | Colorado | 17,136 twins | 1–31 years | Yes | Birth records | Cognition, learning
disabilities,
substance use, and
psychopathology | DNA, Q | Yes | | USA | The Colorado
Adoption
Project | Sally-Ann Rhea
et al. (Robin
Corley) | Colorado | 1,004 subjects | 25–52 years | Yes | Social service
agencies, and
hospitals | Cognition, substance use, and psychopathology | NA | NA | | USA | The Florida State
Twin Registry | Jeanette Taylor
et al. | Florida | 2,591 twin pairs | 5–10 years | Yes | Schools | Reading, behaviors, and environments | Q | No | | USA | The Southern
Illinois Twins
and Siblings
Study | Lisabeth DiLalla
et al. | Southern
Illinois | 291 twin and
triplet sets, 98
sibling pairs,
and 287
singletons | 1–21 years | Yes | Birth records,
newspapers, and
referrals | Aggression, pro-social
behaviors,
parent–child
interactions | DNA, Q | Yes | | USA | The Boston
University
Twin Project | Kimberly
Saudino and
Philip
Asherson
(Kimberley
Saudino) | Massachusetts | 314 twin pairs | 2–3 years | Yes | Birth records | Temperament and
behavior problems
with specific focus
on activity level | DNA | Yes | 10 TABLE 1 Continued. | Country | Name of twin
registry (or
running title) | Name of the first author (corresponding author) ^a | Region | Total sample size ^b | Age of the sample ^c | Longitudinal study? | Major recruitment methods | Major phenotype | Zygosity
assessment
methods ^d | Biospecimens/
DNA
collected? | |---------|--|--|---|---|--------------------------------|---------------------|---|--|--|------------------------------------| | USA | The Michigan
State
University
Twin Registry | Alexandra Burt
and Kelly
Klump
(Alexandra
Burt) | Michigan | Approximately 20,000 twins | 3–30 years | Yes | Birth records,
Michigan
Department of
Community health | Psychiatric and behavioral variables | DNA, Q | Yes | | USA | The Texas Twin
Project | K. Paige
Harden et al. | Texas | Over 630 twin pairs | 6–18 years | No | Schools | Academic achievement, personality, internalizing and externalizing problems, and environmental context | Q | No | | USA | The Mid-Atlantic
Twin Registry | Emily Lilley and
Judy Silberg
(Emily Lilley) | Virginia, North
Carolina,
and South
Carolina | 56,000 twins | All ages | Yes | Birth records, schools,
hospitals, and
events | Mental and physical
health | DNA, Q,
chorionic-
ity, and
anthropo-
metric
assessment | Yes | | USA | University of
Washington
Twin Registry | Eric Strachan
et al. | Washington
State | 7,200 twin pairs | 18 years≤ | Yes | The Washington State Department of Licensing application system | Mental and physical
health | DNA, Q | Yes | | USA | Wisconsin Twin
Research | Nicole Schmidt
et al. | Wisconsin | Approximately
6,000 twin pairs | 3 months to 18
years | Yes | Birth records | Development of early
emotion, child
psychopathology
and related topics | DNA, Q,
chorionic-
ity, and
consensus
ratings by
observa-
tion | Yes | | Int'l | International
Twin Study | Wendy Cozen
et al. | Canada and
United
States | 17,245 twin pairs | All ages | Yes | Media | Cancer and chronic disease | Q | Yes | | Int'l | IGEMS: The
Consortium
on Interplay of
Genes and
Environment
across
Multiple
Studies | Nancy
Pedersen
et al. | Denmark,
Sweden,
and United
States | 17,587 twins and
their family
members | 25–102 years | Yes | Birth and military
records | Late-life mental and
physical health;
adult cognition and
functioning | DNA, Q | Yes | Note: aNames of the corresponding authors are indicated in parenthesis when the first author is different from the corresponding author; for two-author papers, both authors' names are indicated. bTwins = individual twins, including cases with missing co-twins. For most twin registers, the recruitment is ongoing and, therefore, the sample size is likely to change. cAge at assessment or current age. $^{\rm d}$ Q = questionnaire, DNA = analysis of DNA markers, NA = not applicable. well as improve our understanding of context-specific effects in the development of childhood temperament and behavior problems. The Carolina African American Twin Study of Aging (CAATSA) was founded to study genetic and environmental influences on health and related traits in African Americans. CAATSA is, to our knowledge, the only twin registry in the world that focuses on African-American twins. The number of African-American twins who participate in twin registries in the United States (e.g., The Mid-Atlantic Twin Registry) is currently increasing in spite of the challenges with engaging ethnic minorities in scientific research. Together with twins who take part in twin studies in Africa, the CAATSA sample and other African-American twins in several registries in this issue may provide important information to develop optimal prevention and intervention strategies to reduce health disparities between people of African and European origin. The Texas Twin Project was developed to address the question of whether and how family socioeconomic status (SES) and other environmental contexts can moderate genetic influences on psychosocial outcomes in children and adolescents. Taking advantage of the large population size and a high poverty rate in the state of Texas, the investigators were able to maximize representation of low SES families and racial/ethnic minorities in their sample. When the ascertainment of twin families is complete, the project will undoubtedly become an important resource to explore the effects of interactions between genes and social contexts on child development. Prescott et al.'s article in this issue presents their plans to reassess 2,500 pairs of twins and approximately 90,000 siblings who participated in Project Talent (Flanagan, 1962) in the 1960s. In addition to a large, nationally representative sample, the availability of longitudinal data on families, schools, and communities, as well as students themselves, are great strengths of the sample, which will enable investigators to address the roles of environments in educational outcomes in a genetically sensitive design. The adoption design is another major method to study the effects of genes and environments and their interplays on human behaviors and diseases. As it is important and necessary to compare and integrate the findings of adoption and twin studies to resolve many research questions, we invited two large, longitudinal adoption registries to report in this issue: the Colorado Adoption Project and the Early Growth and Development Study. The two papers presented their brief histories, the procedures and strategies to recruit and retain their samples, and their key findings to date. ## An Overview of Twin Registries The papers in this issue provide an overview of how twin registries can be developed and maintained, as well as various research questions that twin researchers are currently interested in (Table 1). While some papers discuss how twins can be used to address various research questions, others reviewed the main findings on the basis of their twin registries. Twin registries cover all ages, with some recruiting before or at birth (e.g., Peri/Postnatal Epigenetic Twins Study [PETS], the Australian Twin Registry [ATR], The North of England Survey of Twin and Multiple Pregnancy, The East Flanders Prospective Twin Survey, the Italian Twin Register, and the West Japan Twins and Higher Order Multiple Births Registry) through to those focusing on all twins, as well as those focusing on older twins (e.g., the Osaka University Center for Twin Study, The Vietnam Era Twin Registry, the Carolina African American Twin Study of Aging, and the Consortium on Interplay of Genes and Environment across Multiple Studies [IGMES]), which extend to 102-year-old twins. Sample sizes of twin registries in the current issue varied greatly, from a few hundred to close to 200,000 twins (the Swedish Twin Registry, the Danish Twin Registry). This issue shows that over 1.5 million subjects are now participating in twin studies around the world! Of note are several large nationwide twin registers in Northern Europe, which increase their sample sizes, representativeness, and research areas by linking their twin cohorts with national demographic, social, and health registers (the Danish Twin Registry, the Finnish Twin Cohort Study, the Norwegian Twin Registry, and the Swedish Twin Registry). Many twin registries are currently carrying out longitudinal assessments, and some twin registries maintain impressively high retention rates over the years (e.g., The National Longitudinal Study of Adolescent Health). Those readers wishing to establish new twin studies would do well to take note of some of the ingenious methods of recruiting: from the traditional media, birth records, immunization and other citizens' registries, schools, websites, voter records, military records, hospitals, twin clubs, twin mothers' associations, and even in the cases of the University of Washington Twin Registry and the California Twin Program, through the Department of Motor Vehicles. One population-based cohort used a 'negative consent' process, treating no response to a mail-out as a positive response and releasing information unless families actively opted out (Colorado Twin Registry). Other studies offered free zygosity tests (e.g., PETS, HealthTwiSt). A variety of methods were used to minimize attrition rates, through newsletters, mail-outs, and even social media (e.g., the Young Netherlands Twin Register). The Vietnam Era Twins Registry also set minimal 'respite periods' between visits and involved twins themselves in the planning of research topics. While the majority of studies featured in this special issue focused on behavioral, psychiatric, and cognitive phenotypes, other well-studied areas include growth and development (Tokyo Twin Database; the Netherlands Twin Registry; the Quebec Newborn Twin Study); common physical diseases and their antecedents (the Chinese National Twin Registry, Twin Registry of Guinea-Bissau; Hungarian Twin Registry; the Norwegian Twin Registry; Vietnam Era Twins Registry); aging (Danish Twin Registry, TwinsUK, Italian Twin Registry); and cancer (the Cuban Twin Registry; the International Twin Study of Cancer and Chronic Disease). Specialist topics include dentition (the Australian study of genetic, epigenetic and environmental influences on dentofacial structures and oral health), eyesight (Australian genetic studies into ophthalmic traits; the Guangzhou Twin Project), sexuality (Finnish study), physical activity (Twin Research in Portugal), fingerprints (the Thai Twin Registry), and drug metabolism and mutagen sensitivity (the Twin Research Registry at SRI International). Most twin studies are now collecting biosamples from tissues such as blood, saliva, or the inner cheek and extracting DNA for genetic studies. As technology has progressed, genetic studies are moving from a focus on individual genes to whole genomes, and some studies have started to use these tools. DNA can also be used for the study of epigenetics, which describes the molecular factors that influence gene activity without changing primary DNA sequence, and which are stable but environmentally changeable. Epigenetic factors are beginning to explain some of the phenotypic discordance within monozygotic (MZ) twin pairs, and registries are either conducting (e.g., PETS, International Twin Study, and California Twin Program) or planning to conduct (e.g., Guangzhou Twin Project and Sri Lankan Twin Registry) such studies. Some twin registries are studying the effects of specific non-shared environments such as those encountered in utero, to begin to explain phenotypic differences within twin pairs (e.g., the East Flanders Prospective Twin Survey, the Peri/Postnatal Epigenetic Twin Finally, we return to the age-old question of how best to determine zygosity. A bewildering array of questionnaires is currently in use, based around questions about whether twins have ever been confused by others. For a definitive answer, many registries use genetic testing on genetically highly variable regions, but again there are many specific methods cited. Perhaps it is time for a consensus on this. What should also go hand in hand with recoding of zygosity is chorionicity, especially because it has been associated with pre- or perinatal mortality and postnatal morbidity (Derom et al., 2001). However, data on chorionicity are not easy to collect retrospectively, and even assessment pre- or postnatally is a highly skilled process. Knowledge of this skill needs to be spread more widely. We hope you enjoy reading about the studies in this issue as much as we have. ### References Bulmer, M. G. (1970). *The biology of twinning in man.* Oxford, UK: Clarendon Press. Busjahn, A. (2002). Twin Registers as a global resource for genetic research. *Twin Research*, 5, 5. Busjahn, A., & Hur, Y.-M. (2006). Twin Registers as a global resource for genetic research. *Twin Research and Human Genetics*, 9, 6. Derom, R., Bryan, E., Derom, C., Keith, L., & Vlietnick, R. (2001). Twins, chorionicity, and zygosity. *Twin Research*, 4, 134–136. Flanagan, J. C. (1962). Project TALENT. Applied Psychology, 11, 3–14. Galton, F. (1876). The history of twins as a criterion of the relative powers of nature and nurture. *Royal Anthropological Institute of Great Britain and Ireland Journal*, 6, 391–406. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavior genetics (4th ed.). New York: W. H. Free-man.