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Abstract

In this paper, we investigate the properties of locally univalent and multivalent planar harmonic mappings.
First, we discuss coefficient estimates and Landau’s theorem for some classes of locally univalent
harmonic mappings, and then we study some Lipschitz-type spaces for locally univalent and multivalent
harmonic mappings.
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1. Introduction

Let D be a simply connected subdomain of the complex plane C. A complex-valued
function f defined in D is called a harmonic mapping if and only if both the real and
the imaginary parts of f are real harmonic in D. It is known that every harmonic
mapping f defined in D admits a decomposition f = h + g, where h and g are analytic.
Since the Jacobian J f of f is given by

J f = | fz|
2 − | fz|

2 := |h′|2 − |g′|2,

f is locally univalent and sense-preserving in D if and only if |g′(z)| < |h′(z)| in D; or
equivalently if h′(z) , 0 and the dilatation w = g′/h′ has the property that |w(z)| < 1 in
D (see [23]). We refer to [14, 17] for the theory of planar harmonic mappings.

This research was partly supported by the Construct Program of the Key Discipline in Hunan Province
and the Start Project of Hengyang Normal University (No. 12B34).
c© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

198

J. Aust. Math. Soc. 96 (2014), 198–215

first published online 8 November 2013)

https://doi.org/10.1017/S1446788713000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000608


For a ∈ C, let D(a, r) = {z : |z − a| < r}. In particular, we use Dr to denote the disk
D(0, r) and D the open unit disk D1. For harmonic mappings f defined in D, we use
the following standard notation:

Λ f (z) = max
0≤θ≤2π

| fz(z) + e−2iθ fz(z)| = | fz(z)| + | fz(z)|

and
λ f (z) = min

0≤θ≤2π
| fz(z) + e−2iθ fz(z)| = || fz(z)| − | fz(z)||.

Thus, for a sense-preserving harmonic mapping f , one has J f (z) = Λ f (z)λ f (z).

2. Main results

For a harmonic mapping f in D and r ∈ [0, 1), the harmonic area function S f (r) of
f , counting multiplicity, is defined by

S f (r) =

∫
Dr

J f (z) dA(z),

where dA denotes the normalized area measure on D. In [21], the authors discussed
some properties of harmonic area functions and proved that a harmonic self-
homeomorphism of a disk does not increase the area of any concentric disk. In this
paper, we discuss coefficients estimates and the Landau theorem for sense-preserving
harmonic mappings having finite area. Let H denote the set of all sense-preserving
harmonic mappings f = h + g in D satisfying the normalization h(0) = g(0) =

fz(0) = 0, where h and g are analytic in D. We denote by H(C) the class of all
mappings f = h + g ∈ H with the finiteness condition

C := sup
0<r<1

S f (r) <∞,

where h and g are analytic in D. For any fixed α ≥ 0, let Hα(C) denote all mappings
f ∈ H(C) with fz(0) = α.

In order to state our main results, we first consider the classH(C). Throughout the
discussion, we assume that h and g have the form

h(z) =

∞∑
n=1

anzn and g(z) =

∞∑
n=2

bnzn, z ∈ D, (2.1)

whenever f = h + g belongs toH(C). Our results are as follows.

T 2.1. Let f ∈ H(C), r0 = (
√

5 − 1)/2 ≈ 0.618, and

Q(r0) =

{ (1 + r0)

r2
0(1 − r0)

C
}1/2

≈ 3.330
√

C.
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Then 
|a1| ≤

√
2C if n = 1,

|an| + |bn| ≤
4Q(r0)

πrn−1
0

(
1 +

1
n − 1

)n−1

<
4Q(r0)e

πrn−1
0

if n ≥ 2,

where

e = lim
n→∞

(
1 +

1
n

)n

. (2.2)

In the special case where C = 1/2, the estimate of |a1| is sharp and the extreme function
is f (z) = z + z2/2.

Let f be a sense-preserving harmonic mapping from D into C. We say that f is a
K-quasiregular harmonic mapping if and only if

Λ f (z)

λ f (z)
≤ K, that is

| fz(z)|
| fz(z)|

≤
K − 1
K + 1

, for z ∈ D,

where K ≥ 1. Moreover, if f is a univalent and K-quasiregular harmonic mapping,
then f is called a K-quasiconformal harmonic mapping.

A harmonic mapping f is called a harmonic Bloch mapping if and only if

sup
z,w∈D, z,w

| f (z) − f (w)|
σ(z, w)

<∞,

where

σ(z, w) =
1
2

log
(
|1 − zw| + |z − w|
|1 − zw| − |z − w|

)
= arctanh

∣∣∣∣∣ z − w
1 − zw

∣∣∣∣∣
denotes the hyperbolic distance between z and w in D.

In [15], Colonna proved that

sup
z,w∈D, z,w

| f (z) − f (w)|
σ(z, w)

= sup
z∈D
{(1 − |z|2)Λ f (z)}.

Moreover, the set of all harmonic Bloch mappings, denoted by the symbolHB, forms
a complex Banach space with the norm ‖ · ‖ given by

‖ f ‖HB = | f (0)| + sup
z∈D
{(1 − |z|2)Λ f (z)}.

For K-quasiregular harmonic mappings, we have the following theorem.

T 2.2. Let f = h + g be a K-quasiregular harmonic mapping in D satisfying
C = sup0<r<1 S f (r) <∞, where h(z) =

∑∞
n=1 anzn and g(z) =

∑∞
n=1 bnzn. Then f ∈ HB

and

|an| + |bn| ≤


√

CK if n = 1,
4
√

CK
π

(
1 +

1
n − 1

)n−1

if n ≥ 2.

In the special case where C = K = 1, the estimate of |a1| is sharp and the extreme
function is f (z) = z.
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The following result is obtained as an application of Theorem 2.1.

T 2.3. Let f ∈ Hα(C) with 0 < α < Q(r0), where r0 and Q(r0) are the same as
in Theorem 2.1. Then for n ≥ 2,

|an| + |bn| ≤
1

nrn−1
0 Q(r0)

inf
0<t<1

{Q(r0)2 − α2(1 − t)2

tn−1(1 − t)

}
<

Q(r0)

rn−1
0

(
1 +

1
n − 1

)n−1

.

The classical theorem of Landau asserts the existence of an universal constant ρ
such that every analytic function f : D→ D with f (0) = f ′(0) − 1 = 0 is univalent in
the disk Dρ and, in addition, the range f (Dρ) contains a disk of radius ρ2. Recently,
many authors have considered Landau’s theorem for planar harmonic mappings (see,
for example, [2–5, 8, 10, 11, 16, 20, 24, 32]). Applying Theorem 2.3, we obtain the
following result, and since a bounded harmonic mapping in D has a finite area, we see
that this result is indeed a generalization of [2, Theorem 3].

T 2.4. Let f ∈ Hα(C) with 0 < α < Q(r0), where r0 and Q(r0) are the same as
in Theorem 2.1. Define

ρ = 1 −
1

√
1 + α/(eQ(r0))

and R0 = r0ρ
(
α −

eQ(r0)ρ
1 − ρ

)
.

Then f is univalent in Dρ. Moreover, f (r0Dρ) contains a univalent disk DR0 .

A continuous increasing function ω : [0,∞)→ [0,∞) with ω(0) = 0 is called a
majorant if ω(t)/t is nonincreasing for t > 0 (see [18]). Given a subset Ω of C, a
function f : Ω→ C is said to belong to the Lipschitz space Lω(Ω) if there is a positive
constant M such that

| f (z) − f (w)| ≤ Mω(|z − w|) for all z, w ∈Ω. (2.3)

For δ0 > 0 and 0 < δ < δ0, we consider the following conditions on a majorant ω:∫ δ

0

ω(t)
t

dt ≤ Mω(δ) (2.4)

and

δ

∫ +∞

δ

ω(t)
t2

dt ≤ Mω(δ), (2.5)

where M denotes a positive constant. A majorant ω is said to be regular if it satisfies
conditions (2.4) and (2.5) (see [18]).

Dyakonov [18] characterized the holomorphic functions of class Lω in terms of their
modulus. Later, in [28, Theorems A and B], Pavlović came up with a relatively simple
proof of Dyakonov’s results. Recently, many authors have considered this topic and
generalized Dyakonov’s results to holomorphic functions and harmonic functions of
one variable and several variables (see [1, 8, 18, 19, 25, 26, 28–31]). In this paper, we
first extend [28, Theorems A and B] to planar harmonic mappings as follows.
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T 2.5. Let ω be a majorant satisfying (2.4) and f ∈ H . Then for all r ∈ (0, 1),

f ∈ Lω(Dr)⇐⇒ | f | ∈ Lω(Dr)⇐⇒ | f | ∈ Lω(Dr, ∂Dr),

where Lω(Dr, ∂Dr) denotes the class of continuous functions F on Dr ∪ ∂Dr which
satisfy the condition (2.3) with some positive constant M, whenever z ∈ Dr and
w ∈ ∂Dr.

In [22], Korenblum proved the following result.

T A. Let u be a real harmonic function in D and fr(θ) = u(reiθ). Then

‖ fr‖BMO ≤
√

1/2‖u‖B
√
| log(1 − r2)| (0 < r < 1),

where ‖u‖B = supz∈D{|∇u(z)|(1 − |z|2)}.

Let BMOh be the complex Banach space of complex-valued and 2π-periodic
functions ψ ∈ L2(0, 2π) modulo constants with norm

‖ψ‖BMOh = sup
z∈D

{ 1
2π

∫ 2π

0
|ψ(eiθ) − fψ(z)|2P(eiθ, z) dθ

}1/2

<∞.

Here P(eiθ, z) is the Poisson kernel given by

P(eiθ, z) =
1 − |z|2

|eiθ − z|2
=

∂

∂nζ
log

∣∣∣∣∣ ζ − z
1 − zζ

∣∣∣∣∣, (2.6)

where nζ is the outward normal to ∂D at ζ = eiθ, and

fψ(z) =
1

2π

∫ 2π

0
P(eiθ, z)ψ(θ) dθ.

We have several extensions of Theorem A.

T 2.6. Let ω be a majorant and f be a harmonic mapping in D. If Λ f (z) ≤
Mω(1/(1 − |z|)) in D and ψr(θ) = f (reiθ), then

‖ψr‖BMO ≤ 2
√
ω(1)Mr

√∫ 1

0
ω
( 1
1 − rt

)
dt,

where θ ∈ [0, 2π) and r ∈ (0, 1).

R. Let f = u + iv be a complex-valued continuously differentiable function
defined on D. Then for z = x + iy ∈ D,

Λ f (z) ≤ |∇u(x, y)| + |∇v(x, y)|, (2.7)

where ∇u = (ux, uy) and ∇v = (vx, vy) (see [10, Lemma 2]). Therefore, the condition
Λ f (z) ≤ Mω(1/(1 − |z|)) in Theorem 2.6 is weaker than the condition

|∇u(x, y)| + |∇v(x, y)| ≤ Mω
( 1
1 − |z|

)
.
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By taking ω(t) = t in Theorem 2.6, we get the following result which is also a
generalization of [22, Theorem 1].

C 2.7. Let f be a harmonic mapping in D. If ψr(θ) = f (reiθ) and Λ f (z) ≤
M/(1 − |z|) in D, then

‖ψr‖BMOh ≤ 2
√

rM
√
| log(1 − r)|,

where θ ∈ [0, 2π) and r ∈ (0, 1).

For K-quasiregular harmonic mappings with finite area, we have the following
corollary.

C 2.8. Let f be a K-quasiregular harmonic mapping in D satisfying C =

sup0<r<1 S f (r) <∞. If ψr(θ) = f (reiθ), then

‖ψr‖BMOh ≤ 2
√

r
√

KC
√
| log(1 − r)|,

where θ ∈ [0, 2π) and r ∈ (0, 1).

A sense-preserving and univalent harmonic mapping f in D will be called a fully
convex harmonic mapping if it maps every circle |z| = r < 1 onto a convex curve
(see [12, page 138]). Clunie and Sheil-Small proved the following result.

T B [14, Corollary 5.8]. Let f = h + g be an univalent and sense-preserving
harmonic mapping in D, where h and g are analytic in D. If f (D) is a convex domain,
then for all z1, z2 ∈ D with z1 , z2,

|g(z1) − g(z2)| < |h(z1) − h(z2)|.

In [13], Chuaqui and Hernández discussed the relationship between the images
of the linear connectivity under harmonic mappings f = h + g and under their
corresponding analytic counterparts h, where h and g are analytic in D. For extensive
discussions on this topic, see [6]. The following result is an analogous result of
Theorem B.

T 2.9. Let f = h + g ∈ H be a fully convex harmonic mapping, where h and g
are analytic in D. Then for all r ∈ (0, 1) and z1, z2 ∈ Dr,

| f (z2) − f (z1)|
1 + r

≤ |h(z2) − h(z1)| ≤
| f (z2) − f (z1)|

1 − r
. (2.8)

The following result, which is an improvement of Theorem B in the case of fully
convex functions, easily follows from Theorem 2.9.

C 2.10. Let f = h + g ∈ H be a fully convex harmonic mapping, where h and
g are analytic in D. Then h is univalent in D.

We also have the following theorem due to Clunie and Sheil-Small [14,
Theorem 5.17] which helps to construct univalent close-to-convex harmonic functions.
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T C. Let f = h + g be a sense-preserving harmonic mapping in the unit disk D,
and suppose that h + εg is convex for some |ε| ≤ 1. Then f is a univalent harmonic
mapping from D onto a close-to-convex domain.

In particular, Theorem C shows that a sense-preserving harmonic mapping in D is
necessarily close to convex in D whenever the analytic part of it is convex. In contrast,
under a mild restriction on f , namely fz(0) = 0, Corollary 2.10 shows that the analytic
part h of a sense-preserving fully convex harmonic mapping f = h + g is necessarily
univalent in the unit disk D. On the other hand, another result of Clunie and Sheil-
Small (see, for example, [14, Theorem 5.7 and Corollary 5.14]) shows that conclusion
of Corollary 2.10 could be improved (see Ponnusamy and Kaliraj ‘Constants and
characterization for certain classes of univalent harmonic mappings’, submitted for
publication).

3. Coefficients estimates and the Landau–Bloch theorem for locally univalent
harmonic mappings

L D [4, Lemma 1] or [7, Theorem 1.1]. Let f be a harmonic mapping of D into
C such that | f (z)| ≤ M and f (z) =

∑∞
n=0 anzn +

∑∞
n=1 bnzn. Then |a0| ≤ M and, for all

n ≥ 1,

|an| + |bn| ≤
4M
π
.

Proof of Theorem 2.1. Let f ∈ H(C). For z ∈ D, consider w(z) = fz(z)/ fz(z). Then
w(0) = 0 and, by Schwarz’s lemma, |w(z)| < r for |z| < r, where r ∈ (0, 1). This implies

Λ f (z)

λ f (z)
=

1 + |w(z)|
1 − |w(z)|

≤
1 + r
1 − r

:= K(r). (3.1)

Since J f (z) = Λ f (z)λ f (z) for the sense-preserving mapping f , we easily have

S f (r) =

∫
Dr

Λ f (z)λ f (z) dA(z) ≥
1

K(r)

∫
Dr

Λ2
f (z) dA(z),

which implies ∫
Dr

Λ2
f (z) dA(z) ≤CK(r).

For θ ∈ [0, 2π) and z ∈ Dr, let Hθ(z) = ( fz(z) + eiθ fz(z))2. Because |Hθ(z)| is
subharmonic for z ∈ Dr,

|Hθ(z)| ≤

∫ r−|z|

0

∫ 2π

0
|Hθ(z + ρeiβ)|ρ dβ dρ

π(r − |z|)2

≤
1

(r − |z|)2

∫
Dr−|z|

(| fz(z)| + | fz(z)|)2 dA(z)

≤
CK(r)

(r − |z|)2
,

204 Sh. Chen, S. Ponnusamy and A. Rasila [7]

https://doi.org/10.1017/S1446788713000608 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000608


and the arbitrariness of θ ∈ [0, 2π) gives the inequality

Λ2
f (z) ≤

CK(r)
(r − |z|)2

. (3.2)

For ζ ∈ D, let F(ζ) = r−1 f (rζ). Then F(0) = 0 and by (3.2) we see that

ΛF(ζ) = Λ f (z) ≤

√
CK(r)

r
1

1 − |ζ |
, (3.3)

where z = rζ. By (3.1) and (3.3),

ΛF(ζ) ≤ min
0<r<1

{C(1 + r)
r2(1 − r)

}1/2 1
1 − |ζ |

=
Q(r0)
1 − |ζ |

,

where

Q(r0) =

[C(1 + r0)

r2
0(1 − r0)

]1/2

=

√
(11 + 5

√
5)C/2 ≈ 3.330

√
C

and r0 = (
√

5 − 1)/2 ≈ 0.618. Again, for w ∈ D and a fixed t ∈ (0, 1), let G(w) =

t−1F(tw). Then G(0) = 0 and

ΛG(w) = ΛF(ζ) ≤
Q(r0)
1 − |ζ |

=
Q(r0)

1 − t|w|
≤

Q(r0)
1 − t

:= M(t), (3.4)

and G has the form

G(w) =

∞∑
n=1

Anwn +

∞∑
n=1

Bnwn,

where An = anrn−1
0 tn−1, Bn = bnrn−1

0 tn−1 and ζ = wt. For θ ∈ [0, 2π), we consider the
function T defined by

T (w) = Gw(w) + eiθGw(w).

Then T (w) can be written in power series as

T (w) =

∞∑
n=1

n(Anwn−1 + eiθBnwn−1).

Applying (3.4), for w ∈ D,

|T (w)| ≤ ΛG(w) < M(t).

By Lemma D, for n ≥ 2,

n(|An + eiθBn|) ≤
4M(t)
π

,
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which gives

|an| + |bn| ≤
4Q(r0)

πnrn−1
0

inf
0<t<1

{ 1
tn−1(1 − t)

}
=

4Q(r0)

πrn−1
0

(
1 +

1
n − 1

)n−1

<
4Q(r0)e

πrn−1
0

,

where e is defined by (2.2). Finally, we come to prove that |a1| ≤
√

2C. Without loss
of generality, we assume that

C =

"
D

J f (z) dA(z).

Then, since the dilatation ω of f = h + g satisfies the relation g′(z) = ω(z)h′(z), by the
definition of the Jacobian,

C =

"
D

J f (z) dA(z)

=

"
D

(1 − |ω(z)|2)|h′(z)|2 dA(z)

≥

"
D

(1 − |z|2)|h′(z)|2 dA(z) (by Schwarz’ lemma |ω(z)| ≤ |z|)

=

∞∑
n=1

n
n + 1

|an|
2

≥
|a1|

2

2
,

which shows that |a1| ≤
√

2C. In particular, if C = 1/2, then the estimate of |a1| is sharp
and the extreme function is f (z) = z + z2/2. The proof of the theorem is complete. �

Proof of Theorem 2.2. By the hypotheses, f = h + g is a K-quasiregular harmonic
mapping in D. Therefore, as in the proof of Theorem 2.1, we see that∫

D

Λ2
f (z) dA(z) ≤CK

and

Λ2
f (z) ≤

CK
(1 − |z|)2

for z ∈ D,

so that

Λ f (z) ≤

√
CK

1 − |z|
for z ∈ D. (3.5)

Thus, f ∈ HB.
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On the other hand, for ζ ∈ D, let F(ζ) = r−1 f (rζ). For w ∈ D and θ ∈ [0, 2π), let

T (ζ) = Fζ(ζ) + eiθFζ(ζ).

Then

T (ζ) =

∞∑
n=1

n(anζ
n−1 + eiθbnζ

n−1
)rn−1 for ζ ∈ D,

and |T (ζ)| <
√

CK/(1 − r) for ζ ∈ D.
We see that

|T (0)| = |a1 + eiθb1| <

√
CK

1 − r
,

which implies that

|a1| + |b1| ≤
√

CK inf
0<r<1

{ 1
1 − r

}
=
√

CK.

By Lemma D, for n ≥ 2, we easily have

n(|an| + |bn|) ≤
4
√

CK
π

inf
0<r<1

{ 1
rn−1(1 − r)

}
. (3.6)

Then by (3.6),

|an| + |bn| ≤


√

CK if n = 1,
4
√

CK
π

(
1 +

1
n − 1

)n−1

if n ≥ 2.

The proof of the theorem is complete. �
The following result is well known (see, for example, [27]).

L E. Let ψ be an analytic function in D with ψ(z) =
∑∞

n=0 cnzn. If |ψ(z)| ≤ 1, then
for each n ≥ 1, |c0|

2 + |cn| ≤ 1.

Proof of Theorem 2.3. Let f = h + g ∈ Hα(C) with 0 < α < Q(r0), where r0 and
Q(r0) are the same as in Theorem 2.1.

Following the proof of Theorem 2.1, for w ∈ D and θ ∈ [0, 2π), we let

H(w) =
Gw(w) + eiθGw(w)

M(t)
,

where G and M(t) are the same as in the proof of Theorem 2.1. Then

H(w) =
1

M(t)

∞∑
n=1

n(An + eiθBn)wn−1

and |H(w)| < 1 for w ∈ D, where An = anrn−1
0 tn−1 and Bn = bnrn−1

0 tn−1. By Lemma E,

n|An + eiθBn|

M(t)
≤ 1 −

λ2
G(0)

M2(t)
= 1 −

α2

M2(t)
.
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Since |An| + |Bn| = (|an| + |bn|)rn−1
0 tn−1, the arbitrariness of θ ∈ [0, 2π) gives

(|an| + |bn|)rn−1
0 tn−1 ≤

1
n

(
M(t) −

α2

M(t)

)
=

1
n

(Q2(r0) − α2(1 − t)2

(1 − t)Q(r0)

)
which implies that

|an| + |bn| ≤
1

nrn−1
0 tn−1

(Q2(r0) − α2(1 − t)2

(1 − t)Q(r0)

)
≤

1

nrn−1
0 Q(r0)

inf
0<t<1

{Q2(r0) − α2(1 − t)2

tn−1(1 − t)

}
<

Q(r0)

nrn−1
0

inf
0<t<1

{ 1
tn−1(1 − t)

}
=

Q(r0)

rn−1
0

(
1 +

1
n − 1

)n−1

<
Q(r0)e

rn−1
0

,

where e is defined by (2.2). The proof of the theorem is complete.

Proof of Theorem 2.4. As in Theorem 2.3, let f = h + g, where g and h are analytic
in D and have the form (2.1). For ζ ∈ D, let F(ζ) = f (r0ζ)/r0, where r0 is the same as
in Theorem 2.1. From the proof of Theorem 2.3, for n ≥ 2,

|an| + |bn| <
Q(r0)e

rn−1
0

. (3.7)

To prove the univalence of F, we choose two distinct points ζ1, ζ2 ∈ Dρ, where

ρ = 1 −
1√

1 + α
eQ(r0)

. (3.8)

Then (3.7) and (3.8) yield that

|F(ζ2) − F(ζ1)| =
∣∣∣∣∣∫

[ζ1,ζ2]
Fζ(ζ) dζ + Fζ(ζ) dζ

∣∣∣∣∣
≥

∣∣∣∣∣∫
[ζ1,ζ2]

Fζ(0) dζ + Fζ(0) dζ
∣∣∣∣∣

−

∣∣∣∣∣∫
[ζ1,ζ2]

(Fζ(ζ) − Fζ(0)) dζ + (Fζ(ζ) − Fζ(0)) dζ
∣∣∣∣∣

> |ζ1 − ζ2|

[
λF(0) −

∞∑
n=2

(|an| + |bn|)nrn−1
0 ρn−1

]
≥ |ζ1 − ζ2|

[
α − Q(r0)

(
1 +

1
n − 1

)n−1

·
ρ(2 − ρ)
(1 − ρ)2

]
> |ζ1 − ζ2|

[
α − eQ(r0) ·

ρ(2 − ρ)
(1 − ρ)2

]
= 0, by (3.8).
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Thus, F(ζ2) , F(ζ1). The univalence of F follows from the arbitrariness of ζ1 and ζ2.
This implies that f is univalent in Dr0ρ.

Now, for any ζ′ = ρeiθ ∈ ∂Dρ, we easily obtain that

|F(ζ′)| ≥ αρ −
∞∑

n=2

(|an| + |bn|)rn−1
0 ρn

≥ αρ − eQ(r0)
∞∑

n=2

ρn

= ρ
(
α −

eQ(r0)ρ
1 − ρ

)
=

R0

r0
.

Therefore, f (Dr0ρ) contains a univalent disk of radius R0. The proof of the theorem is
complete. �

4. Lipschitz-type spaces of harmonic mappings

L F [9, Lemma 1]. Let f be a K-quasiregular harmonic mapping in D with
f (D) ⊂ D. Then for all z ∈ D,

Λ f (z) ≤ K
1 − | f (z)|2

1 − |z|2
. (4.1)

Moreover, (4.1) is sharp when K = 1.

Proof of Theorem 2.5. The implications f ∈ Lω(Dr)⇒ | f | ∈ Lω(Dr)⇒ | f | ∈ Lω(Dr, ∂Dr)
are obvious. We only need to prove | f | ∈ Lω(Dr, ∂Dr)⇒ f ∈ Lω(Dr). For z ∈ D, let
w(z) = fz(z)/ fz(z). Then w(0) = 0 and for any fixed r ∈ (0, 1) and z ∈ Dr, |w(z)| < r.
This gives

Λ f (z)

λ f (z)
=

1 + |w(z)|
1 − |w(z)|

≤
1 + r
1 − r

= K(r).

Now, for a fixed point z ∈ Dr, we consider the function

F(η) = f (z + d(z)η)/Mz, η ∈ D,

where d(z) := d(z, ∂Dr) denotes the Euclidean distance from z to the boundary ∂Dr of
Dr and Mz := sup{| f (ζ)| : |ζ − z| < d(z)}. By an elementary calculation, we obtain that

ΛF(η)
λF(η)

=
Λ f (ξ)

λ f (ξ)
≤ K(r),

where ξ = z + d(z)η. Then F is a K(r)-quasiregular harmonic mapping of D into itself.
By Lemma F, we see that

ΛF(0) ≤ K(r)(1 − |F(0)|2)
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which may be written as

d(z)Λ f (z) ≤ 2K(r)(Mz − | f (z)|). (4.2)

Without loss of generality, we let ζ ∈ ∂Dr with |ζ − z| = d(z), and let w ∈ D(z, d(z)).
Then

| f (w)| − | f (z)| ≤ || f (w)| − | f (ζ)|| + || f (ζ)| − | f (z)||

≤ Mω(d(z)) + Mω(2d(z))

≤ 3Mω(d(z)),

and thus
sup

w∈D(z,d(z))
(| f (w)| − | f (z)|) ≤ 3Mω(d(z)),

which implies that Mz − | f (z)| ≤ 3Mω(d(z)). This inequality together with (4.2) shows
that

Λ f (z) ≤ 6MK(r) ·
ω(d(z))

d(z)
, z ∈ Dr. (4.3)

Finally, given any two points z1, z2 ∈ Dr, let γ ⊂ Dr be a rectifiable curve joining
z1 and z2. Integrating (4.3) along γ,

| f (z1) − f (z2)| ≤
∫
γ

(| fz(z)| + | fz(z)|) ds(z) ≤ 6MK(r)
∫
γ

ω(d(z))
d(z)

ds(z). (4.4)

Therefore, (4.4) yields

| f (z1) − f (z2)| ≤ M1 · ω(|z1 − z2|),

where M1 is a positive constant. The proof of the theorem is complete.

Proof of Theorem 2.6. By (2.6) and integrating by parts,

1
2π

∫ 2π

0
| f (reiθ) − f (rz)|2P(eiθ, z) dθ

=
1

2π

∫ 2π

0
| f (reiθ) − f (rz)|2

∂

∂nζ
log

∣∣∣∣∣ ζ − z
1 − zζ

∣∣∣∣∣ dθ

= −
2r2

π

∫
D

log
∣∣∣∣∣ w − z
1 − zw

∣∣∣∣∣(| fξ(rw)|2 + | fξ(rw)|2) dA(w)

≤ −
2r2

π

∫
D

log
∣∣∣∣∣ w − z
1 − zw

∣∣∣∣∣Λ2
f (rw) dA(w)

≤ −
2r2M2

π

∫
D

log
∣∣∣∣∣ w − z
1 − zw

∣∣∣∣∣ω2
( 1
1 − r|w|

)
dA(w)

≤
2r2M2

π

∫
D

log
1
|w|
ω2

( 1
1 − r|w|

)
dA(w)
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= 4r2M2
∫ 1

0
ρ| log ρ|ω2

( 1
1 − rρ

)
dρ

= 4r2M2
∫ 1

0

[
| log ρ|

d
dρ

∫ ρ

0
tω2

( 1
1 − rt

)
dt

]
dρ

= 4r2M2
[
| log ρ|

∫ ρ

0
tω2

( 1
1 − rt

)
dt

∣∣∣∣∣1
0

+

∫ 1

0

∫ ρ

0
tω2

(
1

1−rt

)
dt

ρ
dρ

]

= 4r2M2
∫ 1

0

∫ ρ

0
tω2

(
1

1−rt

)
dt

ρ
dρ

≤ 4r2M2
∫ 1

0

∫ ρ

0
ω2

( 1
1 − rt

)
dt dρ

= 4r2M2
∫ 1

0

(∫ 1

t
dρ

)
ω2

( 1
1 − rt

)
dt

= 4r2M2
∫ 1

0
(1 − t)ω2

( 1
1 − rt

)
dt

= 4r2M2
∫ 1

0

1 − t
1 − rt

[
(1 − rt)ω

( 1
1 − rt

)]
ω
( 1
1 − rt

)
dt

≤ 4r2M2ω(1)
∫ 1

0
ω
( 1
1 − rt

)
dt,

which implies

‖ψr‖BMOh ≤ 2
√
ω(1)Mr

√∫ 1

0
ω
( 1
1 − rt

)
dt,

where ξ = rw. The proof is complete. �

Proof of Corollary 2.8. Corollary 2.8 easily follows from (3.5) and Corollary 2.7. �

Proof of Theorem 2.9. Differentiating both sides of the equation f −1( f (z)) = z yields
the relations

( f −1)ζh′ + ( f −1)ζg
′ = 1 and ( f −1)ζg′ + ( f −1)ζh

′ = 0,

where ζ = f (z). This gives

( f −1)ζ =
h′

J f
and ( f −1)ζ = −

g′

J f
. (4.5)

Since Ω = f (Dr) is convex, for any two distinct points z1, z2 ∈ Dr and t ∈ [0, 1],

ϕ(t) = ( f (z2) − f (z1))t + f (z1) ∈Ω.
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Let γ = f −1 ◦ ϕ and f (z2) − f (z1) = | f (z2) − f (z1)|eiθ0 . For z ∈ D, let w(z) = fz(z)/ fz(z).
Then w(0) = 0 and for z ∈ Dr, |w(z)| < r, where r ∈ (0, 1). This implies that f is
K(r)-quasiconformal harmonic mapping in Dr, where K(r) = (1 + r)/(1 − r). By
calculations and (4.5),

|h(z2) − h(z1)| =
∣∣∣∣∣∫

γ

h′(z) dz
∣∣∣∣∣

=

∣∣∣∣∣∫ 1

0
h′(γ(t))

d
dt
γ(t) dt

∣∣∣∣∣
=

∣∣∣∣∣∫ 1

0
h′(γ(t))

[
ϕ′(t)

∂

∂ζ
f −1(ϕ(t)) + ϕ′(t)

∂

∂ζ
f −1(ϕ(t))

]
dt

∣∣∣∣∣
= | f (z2) − f (z1)|

∣∣∣∣∣∫ 1

0
h′(γ(t))

( h′(γ(t))
J f (γ(t))

eiθ0 −
g′(γ(t))
J f (γ(t))

e−iθ0

)
dt

∣∣∣∣∣
≤ | f (z2) − f (z1)|

∫ 1

0
|h′(γ(t))|

|h′(γ(t))| + |g′(γ(t))|
J f (γ(t))

dt

= | f (z2) − f (z1)|
∫ 1

0

1
1 − |w(γ(t))|

dt

≤
| f (z2) − f (z1)|

1 − r
.

This gives the second inequality in (2.8). Next we prove the first inequality.
Applying (4.5), we see that

Re [e−iθ0 (g(z2) − g(z1))]

= Re
[
e−iθ0

(∫ 1

0
g′(γ(t))

d
dt
γ(t) dt

)]
= Re

{
e−iθ0

[∫ 1

0
g′(γ(t))

(
ϕ′(t)

∂

∂ζ
f −1(ϕ(t)) + ϕ′(t)

∂

∂ζ
f −1(ϕ(t))

)
dt

]}
= | f (z2) − f (z1)| Re

{
e−iθ0

[∫ 1

0

g′(γ(t))h′(γ(t))eiθ0 − |g′(γ(t))|2e−iθ0

J f (γ(t))
dt

]}
≤ | f (z2) − f (z1)|

∫ 1

0

|h′(γ(t))g′(γ(t))e−2iθ0 | − |g′(γ(t))|2

J f (γ(t))
dt

≤ | f (z2) − f (z1)|
∫ 1

0

|w(γ(t))|
1 + |w(γ(t))|

dt

≤
r| f (z2) − f (z1)|

1 + r
,

which gives

Re
{ g(z2) − g(z1)

f (z2) − f (z1)

}
≤

r
1 + r

. (4.6)
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It is not difficult to see that

Re
{ h(z2) − h(z1)

f (z2) − f (z1)

}
= 1 − Re

{ g(z2) − g(z1)
f (z2) − f (z1)

}
. (4.7)

By (4.6) and (4.7),

|h(z2) − h(z1)|
| f (z2) − f (z1)|

≥ Re
{ h(z2) − h(z1)

f (z2) − f (z1)

}
= 1 − Re

{ g(z2) − g(z1)
f (z2) − f (z1)

}
≥ 1 −

r
1 + r

=
1

1 + r
.

The proof of this theorem is complete. �
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[26] M. Mateljević and M. Vuorinen, ‘On harmonic quasiconformal quasiisometries’, J. Inequal. Appl.

(2010), Article ID 178732, 19 pages, doi:10.1155/2010/1787.
[27] Z. Nehari, Conformal Mapping, Reprinting of the 1952 edition (Dover Publications, New York,

1975).
[28] M. Pavlović, ‘On Dyakonov’s paper “Equivalent norms on Lipschitz-type spaces of holomorphic

functions”’, Acta Math. 183 (1999), 141–143.
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