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The theory of alternating bilinear forms on finite dimensional vector spaces
V is well understood; two forms on V are equivalent if and only if they have
equal ranks. The situation for alternating trilinear forms is much harder. This is
partly because the number of forms of a given dimension is not independent of
the underlying field and so there is no useful canonical description of an alter-
nating trilinear form.

In this paper we consider the set of all alternating trilinear forms on all
finite dimensional vector spaces over a fixed finite field F and show that this set
has a certain finiteness property. We then give a brief description of how this
result may be used to prove two theorems on varieties of groups; in particular,
that every group of exponent 6 has a finite basis for its laws. The details may be
found in my D. Phil. thesis [1] which was written while I held a scholarship
from the Science Research Council. This research was supervised by Dr. P. M.
Neumann and Professor G. Higman for whose help I am beartily grateful.

1. Preliminaries

Throughout this paper F will denote a finite field with g elements. A finite
dimensional vector space over F on which is defined an alternating trilinear form
(u,v,w) is said to be a T-space (over F). If V is a T-space and U £ V then the
restriction of the alternating trilinear form on ¥ to U gives U the structure of
a T-space and we sometimes call attention to this by saying that U is a sub-T-space
of V. A linear transformation «: V — U, where V and U are T-spaces, is said to be
a homomorphism if, for all u,v,weV, (ua,ve,we) = (u,v,w). The terms iso-
morphism, epimorphism and monomorphism are defined in the obvious way.

If A, B, C are subsets of the T-space V we shall write (4,B,C) =0 if
(a,b,c) = 0 for all ac 4, beB, ce C. We write (v,4,B) = 0 if ({v},4,B) = 0.
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Obviously, {ve V|(v, V,V) = 0} is a subspace of V; we shall call it the singular
part of V. It is easy to see that all vector space complements for the singular part
of V are isomorphic (as T-spaces) and so we may unambiguously refer to any one
of them as the non-singular part of V. A T-space is said to be non-singular if it
coincides with its non-singular part and totally singular if it coincides with its
singular part.

If U and V are T-spaces then we may conside their direct sum U @ V in the
usual sense of linear algebra. Of course, this will not have the structure of a
T-space unless the values of (u,,v,,v,) and (u,, u,,v,) are defined for all u;,u, e U
and v,,v, €V e.g. these values are defined if U and V are subspaces of some
T-space W. If (U,U,V) = (U,V,V) =0 then we write U®V = U@_V. In-
ductively we define U, ® U, ®,.--®.U, as U;®.-®.U,_)®.U, and
write U” for this T-space if all the U, are isomorphic to some fixed T-space U.

Let T be the set of all (isomorphism classes of) T-spaces. We define a partial
order < on T by defining U < V if U is isomorphic to a sub-T-space of V. Our
main result on T-spaces is that, with respect to this ordering, ¥ is a partially
well-ordered set. I is partially well-ordered if and only if its closed subsets satisfy
the minimum condition under inclusion; a subset X of T is said to be closed if,
whenever VeX and U<V, UeX. The closure ofaset X, cl X, is {V| V< UeX}.

If A and B are subsets of the T-space V then {ve V| (v, 4, B) = 0} is denoted
by Ann(4, B) and it is obviously a subspace of V.

LemMA 1.1. If A and B are subspaces of the T-space V then
[V: Ann(4,B)] £ (dim 4) - (dim B).

PROOF. Let ey, -+, e,and f,, -+, f, be bases for A and B respectively. Clearly,
Ann(4,B) = (N Ann(e,f;). However, Ann(e;f;) is the kernel of the linear

i=1l.a
J=1.b

functional x +(x, e;, f;) and so has codimension at most 1 in V.

LEMMA 1.2. Let V be a T-space of dimension at least r*. Then V has a
totally singular subspace of dimension r.

ProoF. We proceed by induction on r, the case r = 0 being trivial. Let
r = 1 and suppose that the lemma holds with r — 1 in place of r. Then there
exists a totally singular subspace S of dimension r — 1. Since, by Lemma 1.1,
[V:Ann(S,S)] £ (r —1)> we see that Ann(S,S)¢ S and so there exists
ueAnn(S, S) — S. Obviously, ¢S, u) is totally singular and of dimension r.

If x is a fixed element of some T-space V and U £ V then (x,u;,u,) with
u;,u, € U provides an alternating bilinear form on U. The rank of this form is
called the rank of x on U. In this context we recall a simple fact about alternating
bilinear forms.
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Lemma 1.3. Let (x,y) be an alternating bilinear form of rank r defined on a
vector space V and let U be a subspace of V of codimension n. Then the restriction
of the form to U has rank at least equal to r — 2n.

2. Some basic lemmas

If ey, -+, ¢, is some given basis for a T-space V the scalars (e;, e;, ¢,), for all
1 =1 j, k £n, are called basic products. To define a T-space uniquely it is
sufficient to give a basis ey, -+, ¢, and basic products (e, e, ¢,), forall 1 < i < j
<kZn.

For each n we define a certain T-space ¥, by a basis x, a,, a,, -+, a,, together
with the basic products

(X,a34-1,83) = —(X,a3a5-1)=1for i=1,---,n
(x,a;a;) = 0 for all other i,j

(a,a;a) =0 for all i,j,k.

We observe that V, has a totally singular subspace of codimension 1 and that
the rank of x on this subspace is as large as possible. We note that ¥, is the unique
minimal non-singular element of I.

LEMMA 2.1. If the T-space U is non-singular then every homomorphism
of U into a T-space V is a monomorphism.

ProoOF. Let a: U —» V be a homomorphism and let x belong to the kernel
of a. Then xa = 0 and so, for all u, ve U, (xot, ua, va) = 0. Thus, for all u, ve U,
(x,u,v) = 0 and so x = 0 as U is non-singular.

THEOREM 2.2. For every T-space V there exists an integer n such that
VL VL

PRrOOE. If = is a monomorphism from the non-singular part of V into some
V{ then it is easy to see that 7 can be extended to a monomorphism of V into
Vi*® where s is the dimension of the singular part of V. So, without loss in
generality, we may assume that V is non-singular.

Let ey, ¢, be a basis for V and let U,,---, U, be all the subsets {e;,e;,e,}

with 1 <i<j<kzxr Thus, n= ( ; ) Suppose that V7 is defined by the

basis a,, by,c;,a,,b;y,¢p,+,a,, by, ¢, together with the basic products (a;, b,,¢,)
= (bycpa) = (cpapb) = — (e bya) = — (bss a,c) = — (a;,c;,b) = 1, for all
1 £ i £ n and all other basic products are zero.

Define maps 7p,: Up—> Vi bY €Vn = G €/¥m = by €¥m = (e,,¢,€)C,,
where U, = {e, e, ¢} withi<j<k.
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Now define a linear transformation « from V into V] by defining it as follows
on the basis vectors and extending it by linearity.

ey, if e,e U,

e = ey + -+ + ¢, where e, = : 0 if edU
i m*

To complete the proof we only have to verify that (e, e;a, e,0) = (e;, ), )
forall 1 £i<j<k=r and then appeal to Lemma 2.1. Suppose that
U, = {e,e;, e} with i <j < k. Then (e, e;a, e,)

= (et teme+ o teey + ey
= (e;1,€51,€1) + +*+ + (i, €}y, €4y) by definition of V7.

But (e;, e, €,y) is non-zero only when e, e; and ¢, are all non-zero and this can
only happen when {e;,¢;,¢,} = U}, i.e. when / = m.

Hence, (e, €0 €%) = (€ims €jm> €km) = (€Vm> € V> €4Vm)
= (ps bs (€1 €, €)C) = (€1,€}, €,) (Apy by C)
= (enej,ep)-
The following lemmas exploit our knowledge of alternating bilinear forms.

LeMMA 2.3. Let X be a vector space of alternating bilinear forms on the
vector space V and suppose that, for every S in X, the rank of S is less than 2r.
Then V has a subspace of codimension at most r(r — 1) on which every element
of X vanishes.

PrOOF. We prove the lemma by induction on r, the case r = 1 being im-
mediate. We may suppose that X contains a form S, of rank precisely 2(r — 1).
Then U, = {ue V|Sl(u,u) = 0 for all ve V} is of codimension 2(r — 1). We
shall show that, for every S, in X, the restriction of S, to U, has rank at most
2(r — 2) on U,. Suppose the contrary, so that some S, has rank 2(r — 1) on U,.
Then U, = {ue VlSz(u,v) = 0 for all ve V} has codimension 2(r — 1) in V
and U, N U, has codimension 2(r — 1) in U,;. Thus, we may choose
x{, ., x§),_1, as abasis for U modulo U; NU, and take the x{”, i = 1,2,
j=1,-,2(r — 1), as part of a basis for V, and have

¢) 2 2 2
51(x2j)—1>x(21)) = = Sl(x§j), xé,)—l) = 1 and

1 1 1y ;
SZ(X(Zj)—laxéj)) = — Sy(xz55%35)) =1forall l<j<r-1

together with S,(x,y) = 0 and S,(x,y) = 0 for all other pairs of basis elements.
It is then evident that S; + S, has rank 4(r — 1) = 2r (since r > 1). This contra-
diction shows that S, has rank less than 2(r — 1) on U,. The inductive hypothesis
now yields a subspace U, of U, of codimension at most (r — 1)(r —2) in U; on
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which every element of X vanishes. However,
[V:Ug]=[V:U ]+ [U: U] S2r= D+ (r-1D(r—-2)
= r(r—1).

LemMaA 2.4. Let S,,---,S, be alternating bilinear forms on a vector space
V with the property that every non-zero linear combination X_, «;S; has rank
at least 4r(r — 1) + 2. Then there exist uy,+-+,u,, € V such that the matrix

= S1(uy,uy) : o S(ugeo g, uy,) T

- Sr(ub “z) - - - - Sr(qu— 1> u2r) -

is non-singular and Su;,u,) = 0 for all other i, j and k.

PRrROOF. The lemma is proved by induction on r being trivial if r = 1. Assume
that r > 1 and that S,, -, S, satisfy the hypotheses of the lemma and that the
lemma holds with r — 1 in place of ». Then there exist u;,---, #;,_, in ¥ such
that the r — 1) x (r — 1) matrix

_Sl(ulauZ) : * ' : Sl(qu—l’n u2r—2)

LS, 1(ug,uy) - : : : Sr—1(Uzp-3, Uz 3)
is non-singular and Sy(uj,u,) = Ofor all other i,j,kinl £ i<r—1andl £,
k<2r-2.
Let
Y ={yeV|S{pu)=0forall 1<i<rand 1<j<2r—2}

which is a subspace of V' of codimension at most 2r(r — 1). To complete the
inductive step it is only necessary to find u,,_,, u,, €Y so that the r x r matrix
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Sl(u2r—1’u2r) T B Sl(qu—thr) 7

| S(uy,uz) - S(uz—1,43,) - - S(uz—1,u3,) -
is non-singular. If, for every choice of u,,_,, u,, € Y, this matrix is singular then,
for every choice of u,,_,, u,, €Y, there is a non-trivial dependence relation on
P1,*"» Pr, the rows of the matrix. However, the dependence relation must be the
same (apart from scalar multiples) for all choices of u,,_,, u,, €Y because B
has row rank r — 1 and so there is only one dependence relation on the rows of B.
Therefore there exist scalars f,,--- §, not all zero such that g,p, + -+ + f,0, =0
no matter what elements u,,_,, u,, are taken from Y. Hence B,S,(u,,_,,u,,)
+ oo + B,S(Us,—1,Us,) = O for all u,,_q, u,, €Y. But, by Lemma 1.3, XI_, 8.S;
has rank on Y at least equal to 4r(r — 1) + 2 — 2(2r(r — 1)) > 0, which is a
contradiction.

LEMMA 2.5. Let Sy,---, S, be alternating bilinear forms on a vector space V
having the property that every non-zero linear combination X[_, &S, has rank
at least 4r(r — 1)+ 2. Then there exist u, veV such that S, (u,v) =1 and
S(u,v)=0forall2 sj=<r.

ProoF. The conditions of Lemma 2.4 are satisfied and there exist elements
Uy, Uy, vy, v, of V such that the matrix

B Sl(ul’vl) ) : : . Sr(ulivl) 7

.

— Sl(ur’ U,.) ) : ‘ : Sr(ur’ Ur)

is non-singular and S,(u;,v) = 0if j # k. If py, - p, are the rows of this matrix
then, regarded as coordinate vectors, they span an r-dimensional vector space
and one can find elements f§,,--- §, of F such that

ﬁlpl + et ﬂrpr = (1’0""30)'
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Therefore, B,S(u,,0() + -+ + B,Si(u,,v,) = {

However, since S(u;,v,) = 0if j # k,
BiSi(uy,vy) + - + BS;(u,,v) = Sj(Byuy + -+ + B, 01+ - +0,)
and therefore we may put u = Xi_, Bu; and v = X]_;v; to prove the lemma.

DEFINITION. Let P be an r-dimensional T-space with a basis x), .-, x®.
We define the T-space V(n,r, P,x'V, ..., x®) by a basis

{x®, e xM U a1 < i<, 1

WA
~.
lIA

r}
together with the following basic products:

D (x9,x¥, x®); these are determined by P

2) (x(i),x(j)’ alfl)) — (x(i),x(i),b;‘l)) =0

3) x9aP,a() = xD,b{,b™) = 0

4 (x©, a;l) ,bM) = 01010 i

in each case the subscripts and superscripts running through all possible values,
and

5) basic products which are determined by
<a® b1 i £ n,1 <)< r) being totally singular.

In the special case that P is totally singular V(n,r,P,x®",...,x") is iso-

morphic to V7, the ith central direct summand being generated by x®, a{’, b{’,
() ()
e a,’, b" .

LEMMA 2.6. Suppose that V is a T-space with a totally singular subspace
Vo and an r-dimensional subspace P. Suppose that the rank of every non-zero
element of P on 'V, is at least 8nr* + 4r®>. Then V has a sub-T-space isomorphic
to V(n,r,P,x™, ... x®) where x*', ---,x™ is any basis for P.

Proor. We construct the required subspace by finding elements of ¥,
a{I)’ bfl), ,_,,af'), bir)’ agl), bﬁ‘), (r) b(r) ., a'fr)’ bf'r)

in that order, which satisfy the conditions of the above definition. Suppose that
we have successfully found a{?, b’ for all 1 Si<m<nand 1Zj<rto
construct some subspace U isomorphic to V(m —1,r,P,x®,..-,x®). Let
Uo = VoN Ann(U, U). This has codimension at most 4m?r? in ¥, and hence
every non-zero element of P has, by Lemma 1.3, rank on U, at least 8nr* + 4r?
— 8m?r? > 4r? since m < n. Now we can, by Lemma 2.5, choose a\", b\ e Ug
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to satisfy the correct conditions. Similarly, we can construct a’®,b{?,...,a® b,
(r) btr)
e ly 0y .

LemMMA 2.7. Let V be a vector space on which is defined a function B taking
non-negative integral values and satisfying

a) B(x +y) = B(x) + B(y) and b) B(Ax) = B(x)

for all x,yeV and ). e F — {0}. Suppose that every m-dimensional subspace of
V contains a non-zero vector v such that f(v) £ n. Then V has a subspace U
of codimension m — 1 such that

B(u) £ 2mn for all ucU.

Proor. Clearly, it is possible to find a subspace U of codimension m — 1
with a basis a,,-++, a, such that B(a,) < n for all k. By b), every vector in U is a
sum of linearly independent vectors u; each satisfying f(u;) < n. We complete
the proof by proving, by induction on k, the statement
P, 1f uy,-+,u, are linearly independent vectors of U each satisfying

k

B(u;) £ n, then ﬂ(z ui)g 2mn.
i=1
P, is true by a) for k = 1,2,---,2m. Assume now that k > 2m and that P, holds
for all i < k. Let uy, -, Uy, -+, 4, be linearly independent vectors of U each
satisfying f(u;) < n. For 1 £ i £ m let y; = uy;_y + u,; so that

u=u t-rtup =yt Fypttlgpe oo Fu

Then y,,--,y, are linearly independent and so {y,,-,y,»> has dimension m
and therefore contains a non-zero vector w such that f(w) < n. The element w
is expressible as X_; «;y; where not all «; are zero. We may assume, without

loss in generality, that o; # 0 so that

m
-1 -1
Y=o 'w— X a ‘ay;.
i=2

Thus

m
Uy + Uy =o' W 22 ay tougo g + ).
i=
Substituting for u, + u, we can express u as a linear combination of w,u,, -+, u,
and these are linearly independent vectors. P, now follows from the induction
hypothesis.
We note that, if U is a subspace of the T-space V, then the rank of x on U is
a function B(x) which satisfies a) and b) of Lemma 2.7. We have stated the lemma
in more generality than necessary in order to be able to use it in a subsequent
paper.
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3. Proper closed subsets of I

DEerFINITION. The set of T-spaces which have a totally singular subspace of
codimension at most r obviously forms a closed subset of . We call this subset
the rth hyperlayer and denote it by JI(r). Obviously, T(1) = I(2) = -+- and
U&,2(r) = T. The main theorem of this section is that a closed subset of T
which is not equal to I itself is contained in one of the hyperlayers.

LEmMA 3.1. Let V be a T-space such that V{ £ V and let U be any totally
singular subspace of V. Then every r*-dimensional subspace of V contains a
non-zero element whose rank on U is less than 12r%.

PROOF. Suppose, if possible, that X is an r2?-dimensional subspace of V
every non-zero element of which has rank on U at least 12r?. By Lemma 1.2,
X has a totally singular subspace P of dimension r. Applying Lemma 2.6 with U
in place of V¥, we see that (taking n = 1) V has a sub-T-space isomorphic to
V,r,P,x®, ..., x) where x*) ..., x® is any basis for P. But, since P is totally
singular, this sub-T-space is isomorphic to V. This contradiction proves the
lemma.

LEMMA 3.2. Suppose that V is a T-space such that V{ £V and let U be

any totally singular subspace of V. Then there exist subspaces V, of V and
U, of U such that

a) [V:V]=sr?

b) [U:U,] < 144r®
C) (VO’ UO’ UO) =0
d) U<V,

Proor. For any x € V define f(x) to be the rank of x on U. Then

1) B(x + y) £ B(x) + B(y) for all x,yeV
2) P(Ax) = B(x) forall xeV and AeF — {0}.

Moreover, by the previous lemma, every r*>-dimensional subspace of V contains
a non-zero element x such that f(x) < 12r2. We can apply Lemma 2.7 to obtain
a subspace ¥, of V' such that [V: ¥,] < r? and B(x) < 24r* for all xeV;. In
particular, ¥, satisfies a).

Since every element of V,, has rank on U less than 24r*, Lemma 2.3 guarantees
the existence of a subspace U, of U satisfying b) and ¢). Finally, since (U, Uy, Uy)
= 0, we can replace U 4 ¥, by ¥, and satisfy d).

LeMMA 3.3. Let V be a T-space such that V{ £ V. Then V has a totally
singular subspace of codimension at most (2.144r8 + 2r? + 1) — 1,
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ProoF. Let U be a totally singular subspace of maximal dimension and take V*
so that U@ V* = V. If the lemma is false then dim V'* = (2.144r8 + 2r* + 1)?
and so, by Lemma 1.2, V* has a totally singular subspace W of dimension
2.144r® + 2r? + 1. By the previous lemma there exist subspaces U, £ U,
VY SV, Wy £ W, VE® £ V such that

a) [V:VM] < r? and [V: VY] £ 72

b) [U:U,] =< 144r® and [W: W,] < 1448

Q) (VV,Uo,Up) = 0 and (VP, Wy, W) = 0

d) U=V and W £ V{2,

If we put A=UyNV» and B =W,V then a) implies that
[Up: 41 <r? and [W,:B] £r% By b), [U:A] < 144r® +r? and [W: B]

< 1448 + r2. Moreover, since A NB =0, dim(4 + B) = dimA4 + dim B and
it follows that

dim(4 + B) =2 dim U — (144r® + r?) + dim W — (144r® + r?) = dim U + 1.

However, if C = V{” N V?, C contains both 4 and B and, by c), (C, 4, A)
= (C,B,B) = 0 and hence A4 + B is totally singular. This contradicts the choice
of U.

THEOREM 3.4. A closed subset of T which does not contain every T-space is
contained in one of the hyperlayers.

PrOOF. Let X be a closed subset of T which is not equal to T. By Theorem 2.2
there exists n such that V' £ V for all VeX. It follows from Lemma 3.3 that
X = T(m) where m = (2.144n® + 2n2 + 1)? — 1.

4. The main theorem

In this section we prove the main theorem on T-spaces — that (T, <) is
a partially well-ordered set. As a corollary of the proof we obtain a description
of all closed subsets of .

DEeFINITION. Let P be an r-dimensional T-space with an s-dimensional
sub-T-space Q. Let {(P, Q) denote the closure of the set of T-spaces V which
satisfy the following conditions:

a) V = S@® P where S is totally singular and P is isomorphic to P in an
isomorphism x + % which carries Q to

b) (0,5,5) =0

) (0,0,5) =0.
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We note that §(P, Q) depends not only on P and Q but also on the particular way
in which @ is embedded in P.

The unique T-space V which satisfies a), b), ¢) and the further conditions

d) P = § ® R where R corresponds to a subspace R of P in the isomorphism
and R has a basis x¢*1, ... x®

e) (Q9 R’S) =0

f) R® S =Vmr—s R 2D, ..., 57) in that S has a basis
{a®, b,-(j’ll SiZ<ns+1=j=<r} and the basic products of R@ S resemble
those of the definition of ¥(n,r, P,x™, ..., x®) in an obvious way, is denoted by
S(n,r,5,P,Q,R,x®* Y, ... x™), This also depends on the embeddings of Q and
R into P.

It is easy to see that {S(n,r,s,P,Q,R,x**Y, ... x))*_, is an ascending
chain in (T, X).

LEMMA 4.1. In the notation of the previous definition let V be a T-space
satisfying a), b) and c). Assume that a subspace R of P and basis x®*V, ..., x" is
chosen so that d) holds. Then, for some n,

V < S(n,r,s,P,Q,R,xC*1 ... x™),

ProoOF. Let xV, ..., x® be a basis for Q. Consider a T-space ¥ isomorphic
to S(n,r,s,P,Q, R, x"* V) ... x). We may suppose that it has the following
structure:

1) V¥ =0@® R® S where P is isomorphic to P = J-® R in an isomorphism
x +» % which carries Q to @ and R to R; in particular, for 1 < i,j,k £ r,

()2'(0, .i(j), )Z‘(k)) — (x(i), x(i)’ x(k)) — (j(i)’ J?(j), )?(k))

2) §is totally singular

3) (0,5,8)=0

4) (P,P,5) =0

5) § has a basis {a”,b’|1 i< n, s+1 =)< r} where (39,4, b5)
= 0,00m for s+1=<ijk<r and 1], m<n and (x?,a?,al)
=&Y, bPb¥) = 0,fors+1 <ij,k<rand1 <LmZn.

We may assume that V is non-singular; for if we can embed the non-singular
part of ¥ into ¥ then the singular elements may be embedded into S if necessary
by taking n to be larger. It is enough to map the basis elements of V into ¥ in
such a way that the trilinear form is preserved, for then we can extend the map
to a homomorphism which, by Lemma 2.1, will be a monomorphism.

Let 5y,--+, 5. be a basis for S and let Uy, -+, U, be all the subsets {s: sj} with
i < j. Take n to be any integer not less than p + r. For each k = 1,2, ---, p define
amap Ayt Uy » S by sA, = af*™ D + . + a” and 5,4, = (Y5, 5)b" D +
o+ (#7,5;,5,)b"” where i < j and {s,s;} = U,.
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We now define a linear transformation f of ¥V into P as follows, For 1< i Z ¢,

m=r
siﬁ = S + -+ Sip + E (X(M) Al Si)a;n_,)_m
=1
nm=s+1

_ siAk if §; € Uk
where sy, = { 0  otherwise.
Forl1 £k<r,

POV IO ) yub}, Wherey, =1if k</land 0ifk =1

I=s+1
To show that B is a monomorphism we have to verify

A) (98,298,508 = (9,9, ) forall 1 £ i,j,k S,

B) (s.8,5;8,5:8) = (s5,5;,5,) foralll < i,j,k Z ¢,

O) (¥“8,s,8,5,8) = (¥9,s,,s)foralll Su<randl1 Sv<w

D) (%8, %"8,s,.8) = F®, 5,5 )foralll Su<v<ri=zw=sec

A) ()?(i)ﬁ, )?(j)ﬂ, i(k)ﬂ)

IIA

c,

= (x(l)'l" Z ’yllbfl-zl’,x(n'F Z y}lb;l'i)‘m (k)+ Z 'Yklbk"'!’)

I=s5+1 I=s+1 I=s+1

— (x(l) =0 -(k)) — (~(') (j),i(k)).
B) This follows since both sides are equal to zero.

O (£“B,5.8,5.8)

n=r
m=r
_ ( PO b S o F S+ B (5, %™, ™))
I1=s+1 "’=+11
n=s
n=r
m=r
Swi ot S+ D (5 X ,x‘"’)a,‘,"lm)
m=1
n=1

= (X® 5, + - + Sups Sw1 F ++* +F 8,,), from the definition of ¥, and so

0 if u>s
(f(")ﬂ’ svﬁs swﬁ) = ( -(u)

i=s+1t

if uss

vu Wl)

by definition of 7. Now, if {s,,s,} = U,, then (*, 5,5, is non-zero only when
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both s,; and s,,; are non-zero and this occurs only when both s, and s, belong to
U, ie. when i = k. Thus,

0 if u<s
(x(u)ﬂ’ svﬂ, Swﬁ) =

(x Suks S wk) if u >

0 ifuxgs

(™, 5,A,,5,,A0) if u>s

0 if u<s

r r
&Y, T a®, T xD,s,s )P  ifu>s.
=s+1 I=s5+1

Using again the definition of ¥ we have

0 ifugs
('i(u)ﬁ’ sl)ﬁ’ Swﬁ) =
(E®, a0, (", 5,,5,)b") if u>s
0 ifu<s
&, s,,5,) if u>s
= (£9,s,,5,) fl1su<rsince (8,s,5,)=0
if u £s.

D) ("? (“)ﬂ’ x(v)ﬂ’ Swﬁ) = (X.(u) + Z 'Yulb( +ps x(')) + z yvlbl()’-i)- p°

I=s+1 I=5+1

Swi F oo+ Sy, + (g(m),f(")’sw)a;nzm)

: -
= 1 o o )
= (s = it (‘"" 2, 5)08)

1=s+1 m=1
n=s+
n=r
g 1 5 ) @
= ~ ~ n
+( 2 ))ulbl(l-z-p’x(v) Z (x(m’x")asw)ap+m)
I=s+1 m=1
n=s+1
: ! CIF IR
= ~ ~ n
= ,(x(u)’ z '))l.‘lbf/'lp’ Z ( ) "’sw)av+p)
I=s+1 n=s+1
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r r
1 o) =
-+ ( Y pub),,x ©, % (x",z™, sw)a,f’fp)

I=s+1 n=s+1
0if 1Su<v<s
Purb$ 2 (%, 59, 5,)al,) if 1Sugs<vzr
(9, 7,b8,, E?, %, 5,)al )

+ (b O (ED, £, 5,)all ) if s<u<v<r

Oif 1lSsu<v<s
B F",2”,s)if lSu<rands<ov<rsincey,, =1
andy,, =0

= (x,%9,s,) if 1 £u<vZrsince (39, %9,5,)=0
f15u<v<s.

Thus, A), B), C) and D) are all true and hence B is a monomorphism
of V into V. Therefore V is isomorphic to a sub-T-space of ¥ and hence
V < 8(n,r,s,P,Q,R,x®*Y ... x") as required.

The next lemma is, in some sense, a converse of Lemma 4.1, for it gives a
condition under which a T-space of (P, Q) has a subspace which is isomorphic
to S(n,r,s,P,Q,R,x®* 1, ... x). We shall use both lemmas at the end of the
proof of Lemma 4.3 to deduce that §(P,Q) is the closure of a certain set of
T-spaces.

LemMA 4.2. Let V be a T-space which satisfies conditions a), b)
and c) of the definition of (P, Q). Assume that a subspace, R, of P and a basis,
xU6*D . x®) of R is chosen so that d) holds. If every element of R — {0} has
rank on S at least 8n?r? + 6r* then S has a subspace S, such that

Po S, is isomorphic to S(n,r,s,P,Q, R, x®* Y ... x™M,

PrOOF.Let S, = S NAnn(Q,R) so that [S:S,] £ rs < r2. Hence, by
Lemma 1.3, every element of R — {0} has rank on S, at least 8n%r2 + 6r> — 2r?
= 8n2r? + 4r*. We may now apply Lemma 2.6 to R® S, (with R in place of P
and S, in place of V). This yields a subspace, S,, of S, which satisfies

i) (Q’ﬁ’sl) =0

i) R®S, = V(n,r — s, R, D, ... 50),

It follows that P@ S, is isomorphic to S(n, r,s, P,Q, R, x®* 1, ... x™),

LemMA 4.3. Let X = {V;};2, be an infinite set of T-spaces whose closure
is not T itself. Then there exists a subset of X whose closure is F(P, Q) for some
T-space P and sub-T-space Q of P.
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PrOOF. We shall prove this lemma by successively replacing X by suitable
subsets until we obtain one with the right property.

Since clX # I, Theorem 3.4 implies that, for some integer k, X < I(k).
Each T-space V; of X has, therefore, a decomposition A; @ U; where dimA4; < k
and U, is totally singular. Since F is finite, there are only a finite number of
possibilities for 4; (up to isomorphism of T-spaces) and one of these possibilities
must occur infinitely often. Hence, if we replace X by a suitable infinite subset,
we may assume that 4, = A for all i.

For each i and x € A write x(i) for the element of A; which corresponds to x
in the isomorphism of 4 with 4;. Write r,(x) for the rank of x(i) on U,.

We choose a subset, C, of A maximal under inclusion with respect to the
following property: there exists a subsequence ny,n,,--+ of 1,2,.-- such that
r,(x)— oo as i — oo for all xe C. Since A4 is finite and we allow the possibility
that C may be empty, C certainly exists. Let B = 4 — C. We shall show that B
is a subspace of A. Let beB. If r,(b) is not bounded as i —» co there exists a
subsequence my,m,,--- of ny,n,,-- such that r, (b)—> o0 as i > oo and hence
T'm(X) = 00 as i » oo for all x e {b} U C and this contradicts the maximality of C.
Thus B consists precisely of those elements xe€ A for which r,(x) is bounded
as i — oo. It follows from the relations

r(x + y) £ r(x) + r,(0,r,(ex) = r(x) if o« # 0 and r,(0) =0

that B is a subspace. Replacing X by {V, }7-; we may assume that r,(x) is bounded
asn—-oifxeBand r(x)—> o asn- oo if xe A—B.
Let by, -, b, be a basis for B and let

B; = (by(i), -+, b)) = A4

There exist integers hy, -+, h, such that r(b;) £ h; for all i. Thus, for all i and
forj = 1,2,---,t, the subspace

D, = {xeU|(bji),x,U) = 0}

has codimension at most h; in U;. Let D; = ﬂti=1 D;;. Then, for each i, D; has
codimension at most h = X%_,h; in U; and (B;, D, U) = 0. Let S, = D;
NAnn(B,, B;) so that, by Lemma 1.1, [D;: S;] < t* and hence [U;: S;] < t*> + h.
Moreover, (B, B;,S)) = (B, S;, Up) = 0.

Now, for each i, choose a subspace, T;, such that U; = S;® T;. Since
dim T; £ t? + h, there are only a finite number of possibilities for T; (up to
isomorphism of T-spaces) and so one of these possibilities must occur infinitely
often. By replacing X by a suitable subsequence we may assume that T; & T for
all i.
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As before, for each i and t e T, write #(i) for the element of T, which corres-
ponds to t in the isomorphism of T with T,. Extend the basis by, -, b, of B to a
basis by, -+, b,, -+, b, of A and let t,,---,¢, be a basis for T.

For each i consider the basic products formed with the elements b,(i),
<o, b (1), t,(3), -+, (i) (which form a basis for 4;@ T,). Those basic products of
the form (b,(i), b,(i), b,(i)) and (t,(i),,.(i),t,(i)) are independent of i, while
there are only a finite number of possibilities for the u x u x v array (b,(i), b,(i),
t,(i)) and for the u x v x v array (b(i), t,(i), t,(i)). Thus, as usual, we may replace
X by a suitable subsequence so that the uxuxv array (b(i), b,(i),1,(i)) is in-
dependent of i and then replace (the new) X by a subsequence so that the u - v - v
array (b)(i), t,(i), t,(i)) is independent of i. Then all the sub-T-spaces 4, @ T, are
isomorphic to some T-space of the form A ® T in isomorphisms in which A4,
corresponds to A, B; to B and C; to C.

Let P=A®T, Q =B@®T and choose R £ 4 so that B® R = A. Write
P, 0., R, for the sub-T-spaces of A; ® T; which correspond to P,Q, R. Then, for
each i, the following conditions hold.

a) ¥V, = S;® P, S, totally singular
b) (Q:S:,S) = 0, because (T}, S;, S)) = (B;,S;,S) =0
C) (Qi’ Qia Sx) =0, because (Tn T, S,) = (Bis Bia S.) = (Tn Bi’ Sz) =0.

Thus, X = §(P,Q). Moreover, P = Q@ R. Since R — {0} = A — B it follows
that r(x) —» oo as i — oo for all x e R — {0}. However, since [U;: S;] is bounded
independently of i by t2 + h, it follows that, for all x e R — {0}, the rank of x(i) on
S; tends to infinity with i. Thus, by Lemma 4.2, clX contains S(n,r,s, P,Q,R,
xCTD .. x®) for every n (where r = dimP, s = dim Q and x“* 1, ..., x™isa
basis for R). Hence, clX = §(P, Q) by Lemma 4.1.

THEOREM 4.4. (T,<) is a partially well-ordered set.

ProOF. Since T consists of finite dimensional vector spaces it is obvious
that (T, <) satisfies the minimum condition. Let X be an arbitrary infinite subset
of . We wish to show that there exist distinct T-spaces U, V € X such that U < V.,
If ¥ contains an infinite ascending chain %) such that cl1X = cl9) then we can
take any UeX, find Y, €Y with U< Y, find Y,eP with Y, Y, and ¥, # Y,
and then find VeX with Y, V. If clX = T we can, using Theorem 2.2, take
{Vi}r_,as 9. If cIX # T then, by Lemma 4.3, we can suppose that clX = §(P, Q)
and then, using Lemma 4.1, take {S(n,r,s,P,Q,R,x"* D, ... x*)}2 | as 9.

Another obvious consequence of Lemma 4.3 is that every closed subset of
% is the union of the §(P, Q) which it contains together with finitely many other
T-spaces.
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5. Varieties of groups
In this section we survey the main steps in proving the following theorems

THEOREM 5.1. If m is any integer coprime to 3 then A,B; is hereditarily
finitely based.

THEOREM 5.2. By is hereditarily finitely based.

We begin by indicating how Theorem 5.2 can be deduced from Theorem 5.1.
The fact, due to Hall in [2], that By is locally finite implies that it is generated by
its critical groups. Now, a critical group of exponent 6 has 2-length and 3-length
equal to 1 (see [3]) and from this it follows that every critical group of exponent
6 belongs either to 4,B; or B;A, and, as B34, is a Cross variety, it suffices to
prove that A,B; is hereditarily finitely based. But this follows from Theorem 5.1.

To prove Theorem 5.1 the first step is to use some arguments due to Higman
in [4] to reduce to the case where m is a prime p not equal to 3.

In this case a critical group G of A,B; — B; is a split extension G = NT
of a normal elementary abelian p-subgroup N and a group T of exponent 3.
Because N is a faithful irreducible module for T it follows that T has cyclic
centre Z. By counting conjugacy classes in T and T/Z it can be shown that T
has exactly two absolutely irreducible faithful representations and then, by studying
automorphisms of 7, one can prove that, up to similarity, there is only one
possibility for the representation of T on N. Thus, T determines G up to iso-
morphism.

If we regard T/T"’ as a vector space over GF(3) then the commutator function
[x, y,z] induces an alternating trilinear form on T/T". It is possible to show that
this form uniquely determines T. Thus, the critical group G determines and is
determined by a certain T-space V.

Now the Kovacs and Newman theory of minimal representations is applied
(see Chapter 5 of [5]) and from this it follows that the subvaricties of 4,B; are in
1 — 1 correspondence with the factor closed sets of critical groups in A,B;.
Thus, to prove Theorem 5.1 it suffices to prove that these factor closed sets of
critical groups satisfy the minimal condition under inclusion; or, equivalently,
that the set of critical groups is partially well-ordered under involvement. It is
necessary, therefore, to consider conditions which guarantee that one critical
group H is a factor of another critical group G. One can show that a sufficient
condition for this is that V=< V;; and then Theorem 4.4 completes the proof.
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