Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T04:53:04.840Z Has data issue: false hasContentIssue false

Sub-Ångstrom Low-Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

Published online by Cambridge University Press:  02 July 2010

David C. Bell*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
Christopher J. Russo
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
Gerd Benner
Affiliation:
Carl Zeiss NTS GmbH, Carl Zeiss SMT, Oberkochen, Germany
*
Corresponding author. E-mail: dcb@seas.harvard.edu
Get access

Abstract

Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Ångstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J.R. & Marcus, C.M. (2009). Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301.CrossRefGoogle ScholarPubMed
Dahmen, U., Erni, R., Radmilovic, V., Ksielowski, C., Rossell, M.D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Phil Trans R Soc A 367, 37953808.CrossRefGoogle ScholarPubMed
Essers, E., Benner, G., Mandler, T., Meyer, S., Mittmann, D., Schnell, M. & Höschen, R. (2010). Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter. Ultramicroscopy (doi:10.1016/j.ultramic.2010.02.009).CrossRefGoogle Scholar
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Ksielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.CrossRefGoogle ScholarPubMed
Haider, M. & Schwan, E. (1995). Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector. Optik 99, 167179.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Hawkes, P.W. (2008). Aberration-Corrected Electron Microscopy, Advances in Imaging and Electron Physics, 153. New York: Elsevier.Google Scholar
Hawkes, P.W. & Spence, J.C.H. (Eds.) (2007). Science of Microscopy. New York: Springer.CrossRefGoogle Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J. & Kaiser, U. (2009). Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett 9, 26832689.CrossRefGoogle ScholarPubMed
Muller, D.A., Kirkland, E.J., Thomas, M.G., Grazul, J.L., Fitting, L. & Weyland, M. (2006). Room design for high-performance electron microscopy. Ultramicroscopy 106, 1112.CrossRefGoogle ScholarPubMed
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Imaging Formation, 5th ed., Berlin, Heidelberg: Springer.Google Scholar
Rose, H. (2009). Geometrical Charged Particle Optics. Berlin, Heidelberg: Springer.Google Scholar
Smith, B.W. & Luzzi, D.E. (2001). Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90, 35093515.CrossRefGoogle Scholar
Stöger-Pollach, M. & Pongratz, P. (2010). Advantages of low beam energies in a TEM for valence EELS. 16th International Conference on Microscopy of Semiconducting Materials, Journal of Physics Conference Series 209 012031.Google Scholar
Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K. & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2, 358360.CrossRefGoogle ScholarPubMed
van Huis, M.A, Young, N.P., Pandraud, G., Creemer, J.F., Vanmaekelbergh, D., Kirkland, A.I. & Zandbergen, H.W. (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21, 49924995.CrossRefGoogle ScholarPubMed