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Optical tweezers have become an important tool for biological manipulations and cell mechanical 
properties measurements [1]. These measurements use the displacement from equilibrium position of 
a microsphere as the force transducer. Therefore, the calibration procedure requires the use of good 
models for the optical force in microspheres. Geometrical optics has been used when the particle 
dimensions are much greater than the light wavelength, and Rayleigh scattering theory for the 
opposite. However, when the particles are of the same order of the wavelength these approximations 
are no longer valid. Mie resonances are typical of this size regime. Classical Mie scattering theory 
was developed for plane waves and cannot explain the measurements obtained using a focus beam as 
we have in optical tweezers. In this case, it is necessary to decompose the incident beam in plane 
waves relative to the center of the microsphere. As the beam focus is no longer at the origin of the 
coordinate system all the beam azimuthal symmetry is lost. This can be a complicated problem, 
especially when a full vectorial diffraction description of the electromagnetic fields and highly 
focused laser beams are required. All sorts of approximations and tricks have been used to proceed 
forward to obtain numerical results [2]. 
 
In principle this is an old subject included in text books on Electrodynamics [3] and Mathematical 
Physics [4], where it is common to express the fields here the partial wave expansion of incident 
optical beams in the form: 
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where ),(, φθmnX  is the vector spherical harmonic, )(krjn  are spherical Bessel functions and 

εµ=Z  is the medium impedance. The beam shape coefficients TM
nmG  and TE

nmG  are obtained by 
integrating the radial component of the fields over the solid angle  
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For both sides to be mathematically identical a spherical Bessel function must emerge from the solid 
angle integration. That is the point left in the text books, without, as far as we know, any proof that 
this integration over the solid angle will actually generate the spherical Bessel function necessary to 
cancel out the left hand side for an arbitrary optical beam. Sometimes it is suggested to use two 
radiuses to obtain the coefficients [3], while others propose to perform integration over the radius to 
get rid of the radial function on both sides [5]. 
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In this report we demonstrate that for an analytical expression for the focal field instead of the 
traditional employed Barton-Davis beam description [6-7], the required spherical Bessel function is 
manifested from the solid angle integration. We will also show how it can be used to easily find an 
exact, closed expression, without any approximation, for the beam shape coefficients for an arbitrary 
beam (arbitrary location, polarization and mode) in terms of a single, for axially symmetric beams, 
or double integrals for non axially symmetric beams. These integrals can be numerically evaluated in 
a short time scale by common calculation packages which also make it very helpful for numerical 
evaluation. For the case of a linearly x-polarized TEM(0,0) Gaussian beam the beam shape becomes, 

( )
( )














′−′+














′′−

+
−

+
+

±=











∫ −−−−−

o
m
n

o

omm
nom

o
m
nom

m
n

o

om

ikzafoimmnikf
TE
nm

TM
nm

P
k
kJPkJmim

PkJP
k
kJm

eed
mn
mn

nn
neiikfe

G
G

φα
αρ
αραααρ

φααραα
αρ
αρ

αα
π

π
α

αωαφ

sin)(cos
sin

)sin(sin)(cos)sin(

cos)(cos)sin(sin)(cos
sin

)sin(

cos
!
!

)1(4
122

2

22

max

0

cos0
22sin2

 

written in terms of Bessel and associated Legendre polynomials, where f  is the objective focal 
length, maxα  is the half angle of the numerical aperture, and the center of the beam is located ate the 
coordinate ( ooo z,,φρ ) from the center of the objective lens reference sphere. 

  
Fig.1. Absolute radial magnetic field in the x-y plane for 785nm wavelength, N.A.=1.25, objective 
filling factor of 1.8, and beam waist at (1.5,1.5,1.5)µm: (left) theoretical field; (right) Exact Partial 
Wave reconstruction for just the first 30 terms. 
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