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The goal of this paper is to report on a formalization of the p-adic numbers in the setting of

the second author’s univalent foundations program. This formalization, which has been

verified in the Coq proof assistant, provides an approach to the p-adic numbers in

constructive algebra and analysis.

1. Introduction

In this paper, we present a formalization of the construction of the p-adic numbers

in the Coq proof assistant. The formalization is carried out in the univalent setting

introduced by the second author Voevodsky (2010 Extended version of NSF proposal

at www.math.ias.edu/vladimir) and described in more detail in Voevodsky (2014 Experi-

mental library of univalent formalization of mathematics. To appear). This setting, which

is based on insights from homotopy theory and higher-dimensional category theory,

serves as an overall organizational and methodological framework which informs our

construction. At the same time, our construction has several ingredients which are familiar

in constructive mathematics. The formalization described in this paper will be hosted on

the associated journal website and presents a fixed picture of the development at this

time. However, because work on formalization in this direction is ongoing, we expect that

the Coq code associated with this paper may be updated accordingly in the future by the

authors and others. As such, the structure and content of the Coq code described here,

and hosted on the journal website, may not match exactly the code which is ultimately

included in the univalent foundations libraries found on the authors’ websites. Readers

interested in making use of the code should accordingly consult the latest version available.
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1.1. Motivation

Our motivation in this project is twofold. Firstly, we chose to formalize the p-adic numbers

as an initial step in the development and formalization of the p-adic theory of integrable

systems. We hope that in the future, this will prove to be a promising approach to

this theory which should facilitate progress in the field, in particular with regard to the

construction of algorithms and their numerical analysis. Ultimately, we hope that insights

from this project could be useful in the setting of real integrable systems. Secondly, the

formalization of the p-adic numbers served as an appealing test case for formalization in

the univalent setting of the kinds of structures required by working mathematicians in

areas outside of homotopy theory and logic.

1.2. Choice of setting

The idea of the univalent perspective is, roughly, to develop mathematics within the world

of homotopy types. By virtue of taking this approach we are able to make use of type

theory as a calculus for formal reasoning about homotopy types. We hope that in the

future, because this development of mathematics can be carried out in a proof assistant

such as Coq so that the proofs carry some algorithmic content, it will be possible to

extract good algorithms from the proofs. One of our motivations is that the construction

of such algorithms would in turn help with some problems concerning integrable systems

which are of particular interest in applications. For instance, one outstanding problem

is: given numerical spectral data about a quantum system (coming from an experiment),

extract an algorithm to reconstruct the classical integrable system, see Section 7.

Although, we have chosen to work in the univalent setting, it should be possible to

adapt the construction of the p-adic numbers given here to any sensible constructive

setting. That being said, we believe that a number of features of the univalent setting have

resulted in a much more natural and efficient formalization than would have otherwise

been possible (not to mention that this setting is semantically well-understood). E.g. using

the second author’s set quotients we are able to make direct use of the usual universal

property of quotients in our constructions. Similarly, by situating our constructions within

the filtration of homotopy types by h-levels we avoid complications involving identity types

which might otherwise arise.

We will only briefly touch upon the technical details of homotopy type theory and the

univalence axiom, and we refer the reader to Awodey (2010) for a basic introduction to

homotopy type theory. For univalent foundations and the second author’s Coq library

(Voevodsky 2011, 2014) we refer readers to Pelayo and Warren (2014), where a description

of the research program, its motivations, and its implementation in Coq, are given. Because

it is assumed that the reader is already familiar with Coq and with the second author’s

program, this paper has been written in a style which we foresee future papers in

formalization taking: it is a summary of the Coq code written in ordinary mathematical

English. The details are of course in the Coq code, but the overall structure of the

formalization (as well as the key steps of the proofs) should be apparent from the sketch

given here. The actual Coq code associated to this paper can be found on the websites of
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the authors, as supplementary files to the arXiv posting of this paper, and on the journal

website associated to this issue.

1.3. Structure of paper

Hensel (1900) invented the p-adic numbers Qp about one hundred years ago. The p-adic

numbers and the reals are the canonical metric completions of the rationals. Classically,

there are a number of ways to construct the p-adic numbers, and we refer the reader

to Gouvêa (1993), Koblitz (1984) and Schikhof (1984) for further details regarding the

classical theory. The construction of the p-adic numbers given in this paper is constructive

and uses algebraic, rather than analytic, techniques. Namely, we first construct the integral

domain of p-adic integers Zp as a quotient of the ring Z[[X]] of formal power series over

Z. We were unable to find the specific construction of Zp we employ in the literature, but

we believe that it is known. We then take the p-adic numbers Qp to be the field of fractions

of Zp. Because we are working constructively, and because Z[[X]] does not have decidable

equality, it is necessary to work with an apartness relation and with the corresponding

notions of integral domains and fields. We will refer to the apartness versions of fields as

Heyting fields following the standard usage in constructive mathematics.

In detail, this paper is organized as follows. In Section 2, we give a brief overview of

the univalent setting. In Section 3, we review some basic constructive algebra. Section

4 contains our construction of formal power series and the proofs of several results on

formal power series. The proof that it is possible to form the Heyting field of fractions

for an integral domain is given in Section 5. The construction of the p-adic numbers

appears in Section 6. Section 7 is a brief epilogue containing a sketch of some future plans

concerning p-adic integrable systems. Finally, a more detailed summary of the Coq code,

and a sample of the Coq code of one of the proofs, can be found in the Appendix A.

We should note that the p-adic numbers are also relevant in the physics literature, see

Brekke and Freund (1993) and the references therein. In fact, one of our main motivations

in wanting to develop a p-adic theory of integrable systems is to study inverse spectral

problems concerning p-adic analogues of real quantum integrable systems. We refer to

Section 7.2 for a list of short term plans concerning the p-adic numbers.

2. Univalent basics

The second author’s Coq library spans a large portion of mathematics and we make free

use of this library. However, for the sake of clarity we will mention here those specific

parts of the library which we use in the construction of the p-adic numbers. A survey of

the development of univalent mathematics in Coq can be found in Pelayo and Warren

(2014).

2.1. Notation and conventions

In this paper, and in the Coq files, all rings are assumed to be commutative and with 1.
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N denotes the type of natural numbers which is defined as an inductive type in the

standard way. In the Coq code N is denoted by nat. Similarly, Z denotes the type of

integers which is constructed as the group completion of the abelian monoid of natural

numbers. In the Coq code Z is denoted by hz. This type is constructed as the completion of

the commutative rig of natural numbers to a commutative ring. It therefore automatically

possesses the appropriate algebra structure and universal property.†

U denotes a fixed universe of types. In the Coq code this is denoted by UU. The identity

type IdA(a, b) is denoted by a� b. In the Coq files this is denoted by either paths a b or

by a ∼> b.

We write
∏

x:A .B(x) for dependent products and
∑

x:A .B(x) for dependent sums (defined

here as the record type total2).

We will generally use the same naming conventions as used in the Coq files, but in

some cases we will introduce abbreviations, such as
∑n

i=0 f(i) for summation, when it will

improve the readability.

Because the current implementation of the underlying type system of Coq does not

handle universes (and several related matters) in a way which is completely suited for the

univalent development of mathematics, it is necessary to apply several patches to the Coq

system in order to compile the second author’s Coq library as well as the files described

in this paper. Instructions on how to compile a patched version of Coq can be found in

the second author’s library.

2.2. Basic homotopy theoretic notions in Coq

We think of U as the universe of small homotopy types (or fibrant and cofibrant spaces).

For B : U , we represent a dependent type over B as a term E : B → U . From the

perspective of homotopy theory this corresponds to a fibration over B and, for b : B, E(b)

corresponds to the fiber over b. The dependent product
∏

x:B E(x) is regarded as the space

of sections of the fibration represented by E. Similarly, the dependent sum,
∑

x:B E(x)

corresponds to the total space of the fibration. We think of the identity type a � b as

denoting the fiber of the path space over (a, b). We will use the phrases ‘path space’ and

‘type of paths’ interchangeably for this type. I.e. a term f : a � b corresponds to a path

from a to b.

Given a path f : b � b′ in B and a point e : E(b) in the fiber over b we obtain a

corresponding point f!(e) : E(b′) in the fiber over b′. In the Coq code f! is denoted by

transportf E f e. In order to construct a path x � y in the total space
∑

x:B E(x) it

suffices to construct a path f : π1(x)� π1(y) and a path g : f!(π2(x))� π2(y).

Given a term g : B → A and a path f : b� b′ in B, we obtain a path g(f) : g(b)� g(b′).

In the Coq code g(f) is denoted by maponpaths g f. This corresponds, regarding a

homotopy type as an ∞-groupoid, to the weakly functorial action of g on the path f.

† This is one of the reasons we use this implementation of the integers instead of the built-in Coq integers.
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Definition 2.1 (hfiber). Given types A and B, g : B → A and a : A, the homotopy fiber

of g over a is the type

hfiber g a :=
∑
x:B

(
g(x)� a

)
.

Definition 2.2 (iscontr). We define the type iscontr(A) of proofs that A is contractible as

iscontr(A) :=
∑
c:A

∏
x:A

(
x� c

)
.

We say that A is contractible if iscontr(A) is inhabited.

We will see below that contractibility in this setting plays the same role as canonical

existence in the classical development of mathematics.

Definition 2.3 (isweq and weq). Given g : B → A we define the type isweq(g) of proofs

that g is a weak equivalence as

isweq(g) :=
∏
x:A

iscontr(hfiber g x).

If isweq(g) is inhabited, then we say that g is a weak equivalence.

There is a filtration of types into different ‘h-levels’. Homotopy theoretically this is a slight

extension of the usual filtration by homotopy n-types. We will only require the first few

h-levels in this paper.

Definition 2.4 (isofhlevel, isaprop, hprop, isaset and hset). A type A is of h-level:†

— 0 if A is contractible;

— (n + 1) if, for all a, b : A, the type (a� b) is of h-level n.

We denote by ιn(A) the type of proofs that A is of h-level n. We abbreviate ι1(A) by

isaProp(A) and ι2(A) by isaSet(A). We write hProp for the type of (small) types of h-level

1 and hSet for the type of (small) types of h-level 2.

Intuitively, hProp consists of those spaces which are homotopy equivalent to either the

empty space 0 or to the one element space 1. Accordingly, hProp plays the role played by

the Booleans in classical logic or by the subobject classifier in topos logic. Types in hProp

satisfy proof-irrelevance (proofirrelevance) and, indeed (invproofirrelevance), being

an h-prop is equivalent to being proof-irrelevant. For a type A, hRel(A) is the type of

relations on A. I.e., it is the type A → A → hProp.

Intuitively, hSet consists of those spaces which are homotopy equivalent to discrete

spaces. I.e., these are the sets. Most of the types which we will be dealing with are either

h-props or h-sets. We will sometimes refer to h-sets simply as ‘sets’ when no confusion

will result.

We make use of a number of basic properties of h-levels. E.g.

† Note that in order to define isofhlevel as a type which has values in U , as is done in the file uu0.v from

the second author’s Coq library, it is necessary to compile Coq with a patch.
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1. impred: for n : N , B : U and E : B → U , the type∏
x:B

isofhleveln(E(x)) → isofhleveln

(∏
x:B

E(x)

)
is inhabited.

2. impredfun: for n : N , A,B : U , if A is of h-level n, then so is (B → A).

3. isofhleveldirprod: If A is of h-level n and B is of h-level n, then so is A × B.

2.3. Function extensionality

We make extensive use of the principle of function extensionality (funextfun), which

follows from the second author’s Univalence Axiom.

Definition 2.5 (funextfun). The principle of function extensionality states that, for any

two functions f, g : A → B, the type(∏
x:A

f(x)� g(x)

)
→ (f � g)

is inhabited.

2.4. Properties of hProp

Given a type A : U , there is a universal way to turn A into a h-prop. This is the ‘inhabited’

construction:

Definition 2.6 (ishinh UU). We say that A : U is h-inhabited if the type

Â :=
∏

P :hProp

((A → P ) → P )

is inhabited.

It is immediate, using the facts about h-levels sketched above to see that Â is an h-prop.

Moreover, there is a projection πA : A → Â given by

πA := λx:A.λP :hProp.λf:A→P .f(x).

The map πA is the universal map from A into a h-prop. To see this, observe that if Q

is any h-prop and f : A → Q, then we have a commutative (up to definitional equality)

diagram

Â

A

Q

πA f

f̄

where

f̄ := λt:Â.t(Q)(f).
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Moreover, since Q is a h-prop it follows (using function extensionality) that the space of

such extensions f̄ is contractible.

Using the h-inhabited construction it is possible to endow hProp with the structure of

a Heyting algebra. This structure is summarized below:

Definition 2.7 (htrue,hfalse,hconj,hdisj,hneg,himpl). For P ,Q : hProp and X,Y : U
we define logical operations on hProp as follows:

— 1 and 0 are h-props.

— P ∧ Q := P × Q.

— X ∨ Y := ̂X + Y .

— ¬X := X → 0.

— X =⇒ P := X → P .

In addition to the Heyting algebra operations, there is an existential quantifier (hexists)

which is defined by

∃x:XP (x) :=
∑̂
x:X

P (x)

for any P : X → U and X : U . This quantifier satisfies the usual properties of the

existential quantifier in intuitionistic logic. Note that our ∃ does not correspond to the

built-in existential quantifier ‘exists’ in Coq.

The proof that, with the operations above, hProp is a Heyting algebra makes use of the

Propositional Univalence Axiom (uahp) which says that every logical equivalence between

h-props induces a path between them. I.e. it says that the type∏
P ,Q:hProp

(P → Q) →
(
(Q → P ) → (P � Q)

)
.

is inhabited.

2.5. Set quotients of types

The second author has given several constructions of quotients of types. A hsubtype of

a type A is given by a map S : A → hProp. Denote by P(A) the type of hsubtypes of A.

Given a relation R on A (that is, R : A → A → hProp), an equivalence class consists of a

subtype S of A together with the following data:

1. a term of type ̂∑
x:A S(x).

2. a term of type
∏

x,y:A(xRy → S(x) → S(y)).

3. a term of type
∏

x,y:A(S(x) → S(y) → xRy).

Given a subtype S , we denote by iseqclassR(S) the type consisting of such data. The set

quotient A/R (setquot) of a type A by a relation R is then defined by

A/R :=
∑

S :P(A)

iseqclassR(S).

It is shown (isasetsetquot) in the second author’s library that A/R is a set and that,

when R is an equivalence relation, this set has the usual universal property. In particular,
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there is a function π : A → A/R (setquotpr) which is compatible with the equivalence

relation and, for any set B and function f : A → B which is compatible with R, there

exists an extension f̄ making the diagram

A/R

A

B

π f

f̄

commute. We will make free use throughout of the results on set quotients from the

second author’s library.

3. Basics on constructive algebra

We will here briefly recall some basics of constructive algebra. For a more detailed

treatment we refer to Bridges and Richman (1987) and Mines et al. (1988).

The usual definitions of fields and integral domains are not entirely satisfactory from the

perspective of constructive algebra since they deal with negative properties (the property

of being a non-zero element of the field). From the constructive perspective, it is more

appropriate to replace the notion of an element x being non-zero (x �= 0) with x being

apart from zero, written x#0.

We will now recall the basics regarding apartness relations.

Definition 3.1. (isapart) A relation R : hRel(X) is an apartness relation provided that it

satisfies the following conditions:

Irreflexive for all x : X, ¬(xRx).

Symmetric for all x, y : X, xRy implies yRx.

Cotransitive for all x, y : X, if xRy, then either xRz or zRy, for any z : X.

Classically, the negation of the equality x �= y relation is an apartness relation. However,

negation of equality is not the only classical apartness relation. For example, if X is a

topological space, then the relation R given by xRy if and only if x and y are in different

connected components is an apartness relation. (This example can be generalized to give

a limitless number of classical examples of apartness relations.)

For X : hSet, we denote by Apart(X) the type of apartness relations on X. We generally

denote apartness relations by x# y. When a type has decidable equality the negation of

equality is an apartness relation:

Lemma 3.2 (deceqtoneqapart). If X : hSet has decidable equality, then negation of

equality

¬(x� y)

is an apartness relation on X.
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Definition 3.3 (isapartdec). Given X : hSet and R : Apart(X), we say that R is a

decidable apartness relation on X if the type

(aRb) + (a� b)

is inhabited.

It is immediate (isapartdectodeceq) that if R is a decidable apartness relation on X,

then X has decidable equality.

When we are considering algebraic structures equipped with apartness relations we

will require that the relation is compatible with the operations under consideration. In

particular, for rings we have the following.

Definition 3.4 (acommrng). The type aCRng consists of commutative rings A together

with an apartness relation x# y on A which is compatible with the ring structure of A in

the sense that†

— For all a, b, c : A, if (c + a) # (c + b), then a# b.

— For all a, b, c : A, if (c · a) # (c · b), then a# b.

When a commutative ring A has decidable equality it is straightforward to verify that

negation of equality is compatible with the ring operations in the sense of Definition 3.4.

Definition 3.5 (aintdom). The type aDom consists of A : aCRng such that

— 1# 0.

— For all a, b : A, if a#0 and b#0, then (a · b) # 0.

We refer to the terms of type aDom as apartness domains.

Heyting fields are the appropriate generalization of fields to the constructive setting

when one considers algebraic structures with apartness relations.

Definition 3.6 (afld). The type aFld of Heyting fields consists of A : aCRng such that

— 1# 0.

— For all a : A, if a#0, then a has a multiplicative inverse (the type of multiplicative

inverses of a is inhabited).

We have the following immediate observation:

Lemma 3.7 (afldtoaintdom). If A is a Heyting field, then A is an apartness domain.

Proof. It is immediate to prove that, in a Heyting field, if a has a multiplicative inverse,

then it is apart from 0 (afldinvertibletoazero). It follows that 1# 0. One can show

that if a and b both possess multiplicative inverses, then so does their product a · b
(multinvmultstable). It is then immediate that (a · b) # 0 when a#0 and b#0.

† Note that in the Coq files we actually require the corresponding cancellation properties also on the right.

This is redundant for commutative rings, but for general rings one requires also these further properties.
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4. Formal power series

Our treatment of formal power series makes use of function extensionality, since formal

power series R[[X]] over a commutative ring R are here defined as terms of type N → R

with the operations of addition and multiplication given in the usual way. The main result

of this section is that, with these operations, formal power series is a commutative ring.

Moreover, there is a natural apartness relation on formal power series and, furthermore,

when the ring R has decidable equality the ring of formal power series over R forms an

apartness domain. We will now fill in the details of this sketch.

4.1. Summation in a ring

We define both a restrictive summation operation (natsummation0), which allows us to

form the sum
∑n

i=0 ai of a sequence a : N → R, and a more general operation (summation),

which allows us to form the sum
∑n

i=m ai of a sequence a : Z → R. However, we will only

really require the former of these two constructions and so we will omit details related to

the more general summation. In order to avoid confusion with our notation for dependent

sums, we write
⊕n

i=0 ai for the sum
∑n

i=0 ai. Summation is, of course, defined inductively

by setting

0⊕
i=0

ai := a0 and

n+1⊕
i=0

ai :=
( n⊕
i=0

ai
)

+ an+1.

4.1.1. Manipulation of sums. It is important to note that when we manipulate sums,

to obtain new sums, what is relevant is that there is a path between them, and not

whether they are equal in the strict sense. This is justified because the structures we are

considering are themselves sets. The following lemma includes several basic facts regarding

the behaviour of summation of which we will make frequent use:

Lemma 4.1. Given a natural number n and sequences a, b : N → R, we have the following:

1. (natsummationpathsupperfixed) Given p :
∏

x:N(x � n) → (ax � bx), the type

n⊕
i=0

ai �
n⊕

i=0

bi

is inhabited.

2. (natsummationshift0) The type

n+1⊕
i=0

ai �
( n⊕

i=0

ai+1

)
+ a0

is inhabited.

In order to more easily handle reindexing of sums we introduce, for f : N → N , the type

Autn(f) (isnattruncauto) of proofs that f is an automorphism of the interval [0, n] of
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natural numbers. Explicitly, Autn(f) is defined to be the following type:†(∏
x�n

∑
y�n

(
(f(y)� x) ×

∏
z�n

(f(z)� x) → (y � z)
))

×
(∏
x�n

(f(x) � n)
)
,

where we have abbreviated
∏

x:N (x � n) → · · · as
∏

x�n · · · and
∑

x:N (x � n) × · · ·
as

∑
x�n · · · . It is possible to reindex sums along such automorphisms, as shown by the

following lemma:

Lemma 4.2. (natsummationreindexing) Given a natural number n and a map f : N →
N such that Autn(f) is inhabited, the type

n⊕
i=0

ai �
n⊕

i=0

af(i)

for any sequence a : N → R, is inhabited.

The final fact regarding summation which we require is the following:

Lemma 4.3. (natsummationswap) Given f : N → N → R and a natural number n, the

type

n⊕
k=0

k⊕
l=0

f(l, k − l)�
n⊕

k=0

n−k⊕
l=0

f(k, l)

is inhabited.

4.2. The ring of formal power series

We define, for a type A, the type of sequences of elements of A (seqson) as the function

space N → A. When A is a set so is N → A and for A a commutative ring we take N → A

as the underlying set (fps) of the ring of formal power series over A. If a is a sequence

on A, then we write an : A for the result of evaluating the sequence at the natural number

n. Such a sequence a : N → R represents the formal power series

∞∑
i=0

aiX
i

in a single indeterminate X. In this notation, the indeterminate X on its own denotes the

sequence X : N → R with Xi = 1 when i = 1 and Xi = 0 otherwise.

† Note that we could, alternatively, have used the type (
∏

x�n

∑
y�n (f(y)� x)) × (

∏
x�n(f(x) � n)). However,

the more verbose type we give here is convenient, for purposes of formalization, as it allows for more direct

proofs of subsequent lemmas.
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4.2.1. Ring operations on formal power series. For a given commutative ring R, addition

and multiplication of formal power series are defined as usual by the formulae:

(a + b)n := an + bn

(a · b)n :=

n⊕
k=0

akbn−k.

The zero sequence 0 is given by 0n := 0 for all natural numbers n and the sequence 1 is

given by 10 := 1 and 1n+1 := 0 for all natural numbers n.

Proposition 4.4 (fpscommrng). Let (R,+, ·) be a commutative ring. Then the set of

sequences on R with the operations given above is a commutative ring.

Proof. The proof follows from the facts about summation described above. For example,

to prove associativity of multiplication, we must show that, for all natural numbers n,

n⊕
i=0

( i⊕
k=0

ak · bi−k

)
· cn−i �

n⊕
j=0

aj ·
( n−j⊕

l=0

bl · c(n−j)−l

)
.

For this, we reason as follows

n⊕
j=0

n−j⊕
l=0

aj · (bl · c(n−j)−l)�
n⊕

l=0

l⊕
j=0

(al · bk−l) · cn−l−(k−l) �
n⊕

l=0

l⊕
j=0

al · (bk−l · cn−k),

where the first path is given by Lemma 4.3 and associativity of multiplication in R. In

the Coq proof this line of reasoning is put together with generous use of Lemma 4.1,

(funextfun), several minor lemmas such as (natsummationtimesdistl), and associativity

of R itself.

4.3. The apartness relation on formal power series

Although it is not used in the construction of the p-adic numbers, we mention here some

results contained in the Coq files regarding apartness relations on formal power series.

Assume that R is a commutative ring with an apartness relation. Then there is an

induced apartness relation on formal power series given by setting (fpsapart)

a# b if and only if ∃n:N .an # bn (1)

for a, b : R[[X]]. This apartness relation is compatible with the ring operations and so we

see that R[[X]] : aCRng (acommrngfps).

For R an apartness domain, provided that the apartness relation on R is decidable in

the sense of Definition 3.3, it is possible to show that R[[X]] is an apartness domain.

Proposition 4.5 (apartdectoisaintdomfps). For R : aDom with decidable apartness, the

commutative ring R[[X]] of formal power series is an apartness domain when equipped

with the apartness relation (1).

The proof of Proposition 4.5 is a consequence of the following lemma:
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Lemma 4.6 (leadingcoefficientapartdec). For R : aDom and a : R[[X]], if a0 # 0,

then for any n : N and b : R[[X]], if bn #0, then (a · b) # 0.

Proof. The proof is by induction on n and is obvious in the base case. The induction

case splits into two subcases depending on whether b0 # 0 or b0 � 0. In the former

case, (a · b)0 # 0, whereas in the latter case the claim follows by applying the induction

hypothesis to the sequence b′ : R[[X]] given by b′
n := bn+1.

5. The Heyting field of fractions

The construction of the Heyting field of fractions from an apartness domain is a classical

result in constructive algebra due to Heyting and we therefore give only a brief sketch of

the details here.

Definition 5.1 (aintdomazerosubmonoid). Given A : aDom, we denote by Ã the submon-

oid of A (with respect to the multiplicative structure of A) consisting of those a : A such

that a#0.

It follows (commrngfrac) that there exists a commutative ring A[Ã−1] obtained by

localizing with respect to Ã. It remains to show that there exists an apartness relation on

A[Ã−1] which makes it into a Heyting field.

Definition 5.2 (afldfracapartrel0). For elements a, c : A × Ã we define

a# c if and only if
(
(π1a) · (π2c)

)
#

(
(π1c) · (π2a)

)
.

This relation extends to a relation (afldfracapartrel) on A[Ã−1] and it is straightforward

to show that it is an apartness relation (afldfracapart) which is compatible with the

ring structure of A[Ã−1] (afldfrac0). For instance (iscotransafldfracapartrelpre),

to see that it is cotransitive suppose given (a, a′) # (c, c′) and some (b, b′). Then, by the fact

that A is an apartness domain, we see that a · c′ · b′ # c · a′ · b′. Therefore, by cotransitivity

of the apartness relation of A, we have that either a ·c′ ·b′ # b ·a′ ·c′ or b ·a′ ·c′ # c ·a′ ·b′. In

the former case it follows that a · b′ # b · a′. I.e. (a, a′) # (b, b′). In the latter case it similarly

follows that (b, b′) # (c, c′).

Given a ∈ A × Ã such that a#0, we have π1(a) # 0 and therefore, we take a−1 to be

given by the pair (π2(a), π1(a)). This definition extends to a definition of the inverse of an

element apart from 0 in A[Ã−1] and it is straightforward to show that this makes A[Ã−1]

a Heyting field.

Theorema 5.3 (afldfracisafld). For A : aDom, with the definitions given above, A[Ã−1]

forms a Heyting field.

We refer to the Heyting field from Theorem 5.3 as the Heyting field of fractions of A and

we write Frac(A) for it.
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6. The p-adic numbers

The p-adic numbers were invented about one hundred years ago by German mathem-

atician K. Hensel.

6.1. Basic number theory

The following definition is the relation of integer divisibility, and is given as a two part

definition in the Coq file. The first part says that, given three integers n, m, k, if the product

of n and k is m, then n divides m. The general definition starts only with n and m, and

appeals to the existence of k.

Definition 6.1 (hzdiv0 and hzdiv). Let n and m be integers. We write n|m for the type

n|m := ∃k:Z.(m� n · k)

and we say that n divides m when n|m is inhabited.

The division algorithm is then shown to hold via a series of steps. First, we prove the

division algorithm for natural numbers. Recall that pr1 and pr2 are defined as projections

(π1 and π2) onto the base and ‘specialization’ to a fiber:

Lemma 6.2 (divalgorithmnonneg). For n and m of type nat, with m non-zero, there

exists a term qr : (Z × Z) such that there is a term of type

n�
(
m · π1(qr)

)
+ π2(qr)

and there are proofs that 0 � π2(qr) < m.

The proof of Lemma 6.2 is by induction on n with, in the successor step, a case analysis

on whether (r′ + 1) < m or r′ � m (that such a case analysis is possible follows from

decidability of equality using hzlehchoice from the second author’s library). The proof

of the general division algorithm is then done by a detailed case analysis (on whether n

and m are negative, non-negative or propositionally equal to 0):

Theorema 6.3 (divalgorithmexists). For n and m of type Z with m non-zero, the space

of terms qr : Z × Z such that the types n� (m · π1(qr)) + π2(qr) and 0 � π2(qr) < |m| are

inhabited is contractible.

Here, as throughout, contractibility corresponds to unique existence in the traditional set-

ting. One consequence of the division algorithm is that we obtain the operations of taking

the quotient and remainder of an integer modulo a non-zero integer (hzquotientmod and

hzremaindermod). These two operations will play a role in a number of calculations in

the sequel.

In addition to the division algorithm we also obtain the familiar Euclidean algorithm

(again stated in terms of contractibility of an appropriate space):

Theorema 6.4 (euclideanalgorithm). Let n and m be integers with n non-zero. Then

the space hzgcd(n, m) of greatest common divisors of n and m is contractible.
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We also obtain a form of the Bézout lemma:

Lemma 6.5 (bezoutstrong). For all m, n : Z such that n is non-zero, the type of ab : Z×Z
for which there exists a term of type gcd(n, m)� π1(ab) · n + π2(ab) · m is inhabited.

Given p : Z, the type of proofs that p is a prime is defined by setting

isaprime(p) := (1 < p) ×
(
(m|p) → (m� 1) ∨ (m� p)

)
.

As a consequence of Lemma 6.5 we obtain:

Theorema 6.6 (acommrng hzmod and ahzmod). For non-zero p of type Z, Z/pZ is a

commutative ring with compatible apartness relation. When p is a prime, Z/pZ is a

Heyting field.

Note that the apartness relation on Z/pZ is the one induced by the fact that equality of

Z/pZ is decidable (isdeceqhzmodp).

6.2. The construction of Qp

Throughout this section we assume given a prime p. Explicitly, we require the proof

witnessing the fact that p is a prime. We note though that for some of the results stated

here it is only necessary that p be non-zero. We also introduce some notation for quotients

and remainders modulo p. We denote by {a} the quotient of a modulo p (hzquotientmod)

and by [a] the remainder of a modulo p.

We will now summarize our construction of the apartness domain Zp of p-adic integers.

Definition 6.7 (precarry). Given a formal power series a over Z, we define a new formal

power series p(a) over Z inductively by

p(a)0 := a0

p(a)n+1 := an+1 + {p(a)n}.

Definition 6.8 (carry). Given a formal power series a over Z, we define a new formal

power series a� over Z by

(a�)n :=
[
p(a)n

]
.

We call a� the carried power series of a.

Example 6.9. For p = 3, the formal power series a = (4, 1, 8, 0, . . .) is sent to p(a) =

(4, 2, 8, 2, 0, . . .) and to a� = (1, 2, 2, 2, 0, . . .).

The operation of carrying (mod p) for power series induces an equivalence relation ∼
(carryequiv) on Z[[X]] by setting

a ∼ b if and only if a� � b�.

Observe that X − p ∼ 0. Furthermore, for any a ∈ Z[[X]], if a ∼ 0, then there exist

integers λi such that a0 = −λ0p and an+1 = −λn+1p + λn. Using these facts it follows that

∼ is the equivalence relation corresponding to the ideal (X − p) in Z[[X]]. Ultimately,
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once the theory of ideals has been developed in the univalent foundations library, Zp will

be constructed as the quotient of Z[[X]] by this ideal. However, because quotients of

rings are given in the second author’s library in terms of congruences, we here describe

Zp using the corresponding congruence ∼.

We will now describe the proof that this relation is a congruence with respect to the

ring operations on Z[[X]].

Lemma 6.10 (quotientprecarryplus). For formal power series a and b over Z,

{p(a + b)n}� {p(a)n} + {p(b)n} + {p(a� + b�)n}

for n : N .

Proof. The proof is by induction on n. In the base case it is trivial and in the induction

case it is by the following calculation:

{p(a + b)n+1}� {p(a)n+1 + p(b)n+1 + {p(a� + b�)n}}

� {p(a)n+1} + {p(b)n+1} + {p(a� + b�)n} + {a�n+1 + b
�
n+1 + [p(a� + b�)n]}

� {p(a)n+1} + {p(b)n+1} + {p(a� + b�)n+1}

where the first path is by definition of precarry and the induction hypothesis, the second

path is by the familiar decomposition of the quotient of a sum, and the final path is by

definition and the fact that the quotient of a remainder is zero.

The following observation is a consequence of Lemma 6.10.

Lemma 6.11 (carryandplus). For a and b formal power series over Z, (a+b)� � (a�+b�)�.

Similarly, a straightforward induction gives us the following lemma:

Lemma 6.12 (precarryandtimesl). Given formal power series a and b over Z,

{p(a · b)n}� ({p(a)} · b)n + {p(a� · b)n}

for n : N .

The proof that carrying is compatible with multiplication of power series is then an

immediate consequence of Lemma 6.12.

Lemma 6.13 (carryandtimes). Given formal power series a and b over Z, (a · b)� �
(a� · b�)�.

It follows from Lemmas 6.11 and 6.13 that the quotient of Z[[X]] by the equivalence

relation ∼ is itself a commutative ring (commrngofpadicints). Indeed, it is the commut-

ative ring Zp of p-adic integers. Moreover, there is an apartness relation (padicapart) on

p-adic integers obtained as the extension of the relation (padicapart0)

a# b if and only if ∃n:N .¬(a�n � b�n), (2)

for a, b : Z[[X]], to the p-adic integers. This apartness relation is straightforwardly seen

to be compatible with the ring structure of Zp (acommrngofpadicints).
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Theorema 6.14 (padicintsareintdom,padicintegers). The commutative ring Zp with

the apartness relation described above forms an apartness domain.

Proof. It suffices to prove that for a, b : Z[[X]] such that a#0 and b#0 it follows that

a · b#0, where we are considering only the apartness relation (2). Since Z has decidable

equality, it follows (leastelementprinciple) that there are natural numbers k and m

which are the least natural numbers such that ¬(a�k � 0) and ¬(b�m � 0), respectively. It

then follows that ¬((a · b)�k+m � 0).

To see this, assume for a contradiction that there is a path (a · b)�k+m � 0 and consider

first the case where k + m = 0. Then we have that a0 · b0 is congruent to 0 modulo p and

therefore, since p is prime, either a0 is congruent to 0 modulo p or b0 is congruent to 0

modulo p. In either case we have obtained a contradiction.

On the other hand, when k + m is a successor k + m = n + 1, we have that

(a · b)�k+m �
[
(a� · b�)k+m + {p(a� · b�)�n}

]
. (3)

By the choice of k and m it follows that there is a further term (precarryandzeromult)

of type p(a� · b�)�n � 0. Therefore, we obtain a term of type

0� [(a� · b�)k+m].

However, it is easy (hzfpstimeswhenzero) to see that (a� · b�)k+m � a
�
k · b�m. So, since p is

prime, either a
�
k � 0 or b�m � 0 is inhabited. In either case we obtain a contradiction.

Using Theorem 6.14, we now arrive at our definition of the p-adic numbers.

Definition 6.15 (padics). The Heyting field Qp of p-adic numbers is defined as the

Heyting field of fractions of Zp:

Qp := Frac(Zp).

As the field of fractions of the p-adic integers, possessing the appropriate universal

property, it is clear that what we have described are indeed the p-adic numbers.

7. Future directions: towards p-adic integrable systems

Next we present an outline of the work on p-adic integrable systems that we plan to carry

out following this paper. The long term goal is to develop an analogue of the symplectic

theory of finite-dimensional real integrable systems in Pelayo and Vũ Ngo. c (2009, 2011)

for p-adic integrable systems in the univalent setting, and implement it in Coq.

We are beginning to explore this, and what we give next is a brief and informal glimpse

of our plans. At this point, this section is a discussion without rigorous descriptions as

we are not yet convinced of the optimal definition of p-adic integrable system. We hope

to convey the fact that the p-adic and real theories are expected to be different, and

draw attention to the topic; in fact, we are not aware of a uniform treatment of p-adic

integrable systems in the symplectic setting.
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7.1. Definition of p-adic integrable systems

7.1.1. A word on the contrast between p-adic and real notions. We refer to (Gouvêa 1993,

Section 3) for basic algebraic and topological aspects concerning the p-adic numbers.

Many aspects do not match the intuition we have for the real numbers. For instance,

there are no nontrivial connected sets and there are non-empty sets which are both

compact and open. Other aspects are more familiar: on Qp there is an absolute value | · |
and Qp is complete with respect to it, and there is an inclusion Q → Qp with dense image.

Continuity and differentiability of functions is defined in the usual way (Gouvêa 1993,

Definitions 4.2.1 and 4.2.2). Continuous functions are uniformly continuous on compact

sets, as in the real case.

The notions of continuity and differentiability extend to functions f : U ⊂ (Qp)
n → Qp

of several variables (x1, . . . , xn) on open sets U of the Cartesian product (Qp)
n, in direct

analogy with the real case, and in particular we have analogous definitions for partial

derivatives ∂f
∂xi

, for all i = 1, . . . , n. But although the definitions are the same, differentiability

behaves differently in the p-adic case than in the real case. For instance, there are functions

f : Qp → Qp which have zero derivative everywhere but are not locally constant. Also,

the natural extension of the real mean value theorem to the p-adic case is false in general

(although a version holds for sufficiently close points), as seen for instance by considering

f(x) = xp − x between the extreme points a = 0 and b = 1. In this case, (Gouvêa 1993,

Proposition 4.2.3) f′(x) = pxp−1 − 1 and f(a) = f(b) = 0 and it is easy to check that any

element ‘in between’ a and b, that is, of the form at + b(1 − t) = 1 − t for some t with

|t| � 1, gives rise to a unit f′(1 − t) in Zp.

These differences are an indication that the theory of p-adic integrable systems is not

expected to be a direct extension of the theory of real integrable systems, even if the basic

definitions are analogous. One can explore such theory classically only, but we hope to

do it in the univalent setting, building on the constructions of Qp which we have given in

the previous sections.

7.1.2. Integrable systems. We are here going to propose a notion of p-adic integrable

systems in parallel with the commonly accepted notion of real integrable systems, at least

in symplectic geometry.

Because in the univalent foundations, and in Coq, it is nontrivial to define manifolds,

for now we are going to work with the p-adic Cartesian product

M := (Qp)
2n = Qp × · · · (2n times) · · · × Qp

with coordinates (x1, y1, . . . , xn, yn). In this way, we also avoid a discussion of differential

or symplectic forms. Fix a p-adic measure on Qp, and endow M with the induced product

measure.

On M we may consider differentiable functions in the p-adic sense†. The following is

the formal extension of the definition of real integrable system in finite dimensions. There

† For now we are thinking only of polynomials on 2n-variables, which are easy to deal with in Coq.
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is, however, a critical point which is not clear to us at the moment, and that’s why we

restrict our definition to analytic maps, see Remark 7.2.

Definition 7.1. We will say that a (p-adic) analytic map F := (f1, . . . , fn) : M → (Qp)
n is a

p-adic integrable system if two conditions hold:

1. The collection f1, . . . , fn satisfies Hamilton’s equations:

n∑
k=1

∂fi

∂xk

∂fj

∂yk
− ∂fi

∂yk

∂fj

∂xk
= 0, ∀ 1 � i � j � n. (4)

2. The set where the n formal differentials

dpi :=

(
∂fi

∂x1
, . . . ,

∂fi

∂xn
,
∂fi

∂y1
, . . . ,

∂fi

∂yn

)
, ∀ 1 � i � n

are linearly dependent has p-adic measure 0.

That is, there exists a p-adic measure 0 set A such that df1, . . . , dfn are linearly

independent on M \A. The points where df1, . . . , dfn are linearly dependent are called

singularities.

Remark 7.2. This remark explains why we have to restrict to analytic functions in

Definition 7.1, when in the real theory one likes to include all smooth functions in the

definition of integrable system. There are many interesting, nontrivial p-adic functions

that are smooth and have zero derivative everywhere. However this is not possible if one

restricts to analytic functions. Therefore, if f is a smooth solution to a linear differential

equation, we could add to f any of these nontrivial functions with zero derivative and

obtain a new solution. It follows that all collections of n smooth functions f1, . . . , fn which

are smooth and have zero derivative everywhere would also form a kind of integrable

system, but a very ‘degenerate’ one (in the sense that the differentials df1, . . . , dfn would

not be linearly independent almost everywhere as it is normally required for real integrable

systems). So this undesirable case does not occur. However, adding functions with zero

derivative to an existing system would be unavoidable, giving rise to a new, seemingly

very different, p-adic integrable system. We currently understand neither what this means

geometrically, nor what it implies for the development of the theory.

7.2. Future plans

The following is a rough outline of what we would like to do next.

7.2.1. Towards p-adic symplectic geometry.

� p-adic manifolds: formalize the notion of p-adic manifold in the univalent foundations

with Coq. Formalize Serre’s theorem (Serre 1965) classifying compact p-adic manifolds.

� p-adic symplectic forms: a p-adic symplectic form ω may be defined as in the real

case. The closedness condition dω = 0 makes sense in the p-adic setting, and so does

the non-degeneracy condition (in fact, over any field). In the real setting, a theorem

of Darboux says that all symplectic forms are locally equivalent, so real symplectic

manifolds have no local invariants. It is natural to wonder whether this result holds
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in the p-adic setting ‘as is’. Because of our previous discussion (see Remark 7.2) one

should probably restrict to the analytic setting since dω = 0 is in fact a system of

partial differential equations. Darboux’s theorem plays a leading role in the theory of

real integrable systems.

7.2.2. Towards p-adic integrable systems: basic theory.

� construction of p-adic integrable systems: define p-adic integrable systems on p-adic

manifolds, not just (Qp)
n, and implement this in the univalent foundations using Coq.

� p-adic local and semiglobal theory: develop the local and semilocal theory of p-adic

integrable systems in Coq. The local theory basically refers to local models, and the

semilocal theory refers to local models in neighborhoods of fibers. One is interested in

both the topological and symplectic classification of such models. We are not aware of

results describing the topological, or symplectic, structure of regular or singular fibers

in the p-adic setting.

In the real case, the regular fibers and their neighborhoods are understood (this is the

famous action-angle theorem due to Mineur and Arnold.) The singular fibers may be

complicated and are not yet well understood in the real setting either (if one restrict

to the real analytic setting, then the theory is better understood).

7.2.3. Towards p-adic toric and semitoric systems.

� p-adic toric systems: a particular class of real integrable systems which has been

thoroughly studied and is well understood, is that of toric integrable systems F =

(f1, . . . , fn) on 2n-dimensional compact symplectic manifolds (M,ω). These are systems

in which each component fi generates a flow which is periodic of a fixed period. In

this case, F is called a momentum map. Atiyah (1982), Guillemin and Sternberg (1982)

and Delzant (1988) proved a series of striking theorems concerning these systems in

the 1980s, which in particular led to complete combinatorial classification in terms of

convex polytopes by Delzant (these convex polytopes are nothing but the images of

M under F). A theorem of Serre (1965) classifies compact p-adic analytic varieties. If

on these varieties we would consider actions of the p-adic n-torus, we do not know

to what extent the above results could be extended. If in Definition 7.1 one allows

smooth non-analytic functions, these results would not hold (see Remark 7.2).

� p-adic semitoric systems: give a classification of p-adic integrable systems under some

periodicity condition in analogy with Pelayo and Vũ Ngo. c (2009, 2011).

7.2.4. Spectral questions for p-adic integrable systems. Here we restrict to the systems in

the previous section, for which we know that in the real case a full classification may be

given.

� Inverse spectral problems: construct algorithms to solve inverse spectral problems

about quantum integrable systems. The leading question in the real case is: given the

spectrum, can one recover the system from it?

� Numerical implementation of inverse spectral problems: constructing numerically ac-

curate algorithms to solve inverse spectral problems.

https://doi.org/10.1017/S0960129514000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000541


Univalent formalization of p-adic numbers 1167

The first subsection above should be within reach. We expect the second and third

subsections to be substantial. The fourth one depends on the third and it is difficult to

predict how complicated it will be.
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Appendix A. Getting and Reading the Coq Code

The Coq code can be found on the website associated to this issue of the journal. In order

to compile the code we have used Coq 8.3pl2 together with the patches included in the

second author’s Coq library (Fall 2011 version). All of the files associated with this paper

require the second author’s Coq library. For more on this library we refer the reader to

the library itself and to the tutorial (Pelayo and Warren 2014). Figures A1 and A2 give

the dependences of the second author’s library and the library associated with this paper,

respectively.

Of the new files, the file lemmas.v contains a number of small lemmas which, such as

basic facts about apartness relations, some lemmas on rings, et cetera, which are required

by the other files. The file fps.v contains all of the material on formal power series. The

construction of the Heyting field of fractions can be found in frac.v. The basic number

theoretic results which we require are in zmodp.v. Finally, the construction of the p-adic

numbers is given in padics.v.

uuu

uu0

hProp

funextfun

hSet

algebra1a

algebra1b

algebra1c

algebra1d hnat

hz

stnfsets

finitesets

Fig. A1. Dependence diagram of the second author’s Coq library.

hz lemmas frac

zmodp

fps

padics

Fig. A2. Dependence diagram of the additional Coq files for the p-adics.
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A.1. A sample Coq proof

We include below a sample of the Coq code as an illustration for the interested reader.

The particular example we give is the statement of the lemma quotientprecarryplus

which is Lemma 6.10 above. The proof in the Coq code is as described in the text above

and the reader can see that the proof consists almost entirely of rewriting. This is typical

of many of the proofs given in the Coq files, although others rely on a careful analysis

into smaller lemmas and several proofs related to the apartness relation on the field of

fractions were simplified using a custom built tactic (permute).

Lemma quotientprecarryplus

( m : hz ) ( is : hzneq 0 m ) ( a b : fpscommrng hz ) ( n : nat ) :

hzquotientmod m is ( precarry m is ( a + b ) n ) ~>

( hzquotientmod m is ( precarry m is a n ) +

hzquotientmod m is ( precarry m is b n ) +

hzquotientmod m is (

precarry m is ( carry m is a + carry m is b ) n

)

).

Proof.

intros. induction n.

simpl.

change ( hzquotientmod m is ( a 0%nat + b 0%nat ) ~>

(hzquotientmod m is (a 0%nat) + hzquotientmod m is (b 0%nat) +

hzquotientmod m is ( hzremaindermod m is ( a 0%nat ) +

hzremaindermod m is ( b 0%nat ) )

) ).

rewrite hzquotientmodandplus. apply idpath.

change ( hzquotientmod m is ( a ( S n ) + b ( S n ) +

hzquotientmod m is ( precarry m is (a + b) n ) ) ~>

(hzquotientmod m is (precarry m is a (S n)) +

hzquotientmod m is (precarry m is b (S n)) +

hzquotientmod m is (

carry m is a ( S n ) +

carry m is b ( S n ) + hzquotientmod m is (

precarry m is (carry m is a + carry m is b) n)

)

) ).

rewrite IHn.

rewrite ( rngassoc1 hz ( a ( S n ) ) ( b ( S n ) ) _ ).

rewrite <- ( rngassoc1 hz ( b ( S n ) ) ).

rewrite ( rngcomm1 hz ( b ( S n ) ) _ ).
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rewrite <- 3! ( rngassoc1 hz ( a ( S n ) ) _ _ ).

change ( a ( S n ) + hzquotientmod m is ( precarry m is a n ) )

with ( precarry m is a ( S n ) ).

set ( pa := precarry m is a ( S n ) ).

rewrite ( rngassoc1 hz pa _ ( b ( S n ) ) ).

rewrite ( rngcomm1 hz _ ( b ( S n ) ) ).

change ( b ( S n ) + hzquotientmod m is ( precarry m is b n ) )

with ( precarry m is b ( S n ) ).

set ( pb := precarry m is b ( S n ) ).

set ( ab := precarry m is ( carry m is a + carry m is b ) ).

rewrite ( rngassoc1 hz ( carry m is a ( S n ) )

( carry m is b ( S n ) ) ( hzquotientmod m is ( ab n ) ) ).

rewrite ( hzquotientmodandplus m is ( carry m is a ( S n ) ) _ ).

unfold carry at 1.

rewrite <- hzqrandremainderq. rewrite hzplusl0.

rewrite ( hzquotientmodandplus m is ( carry m is b ( S n ) ) _ ).

unfold carry at 1.

rewrite <- hzqrandremainderq. rewrite hzplusl0.

rewrite ( rngassoc1 hz pa pb _ ).

rewrite ( hzquotientmodandplus m is pa _ ).

change (pb + hzquotientmod m is (ab n))

with (pb + hzquotientmod m is (ab n))%hz.

rewrite ( hzquotientmodandplus m is pb ( hzquotientmod m is ( ab n ) ) ).

rewrite <- 2! ( rngassoc1 hz ( hzquotientmod m is pa ) _ _ ).

rewrite <- 2! ( rngassoc1 hz

( hzquotientmod m is pa + hzquotientmod m is pb ) _ ).

rewrite 2! ( rngassoc1 hz ( hzquotientmod m is pa +

hzquotientmod m is pb +

hzquotientmod m is (hzquotientmod m is (ab n)) ) _ _ ).

apply ( maponpaths

( fun x : hz => ( hzquotientmod m is pa +

hzquotientmod m is pb +

hzquotientmod m is (hzquotientmod m is (ab n)) ) +

x

) ).

unfold carry at 1 2. rewrite 2! hzremaindermoditerated.

change ( precarry m is b ( S n ) ) with pb.

change ( precarry m is a ( S n ) ) with pa.

apply ( maponpaths

( fun x : hz => ( hzquotientmod m is ( hzremaindermod m is pb +

hzremaindermod m is (hzquotientmod m is (ab n)))%hz ) + x

) ).

apply maponpaths.
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apply ( maponpaths

( fun x : hz => hzremaindermod m is pa + x ) ).

rewrite ( hzremaindermodandplus m is ( carry m is b ( S n ) ) _ ).

unfold carry. rewrite hzremaindermoditerated.

rewrite <- ( hzremaindermodandplus m is ( precarry m is b ( S n ) ) _ ).

apply idpath.

Defined.
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