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1 Introduction

When I was a student, Simula was one of the languages taught in introductory pro-

gramming language courses and I vividly remember a sticker one of our instructors

had attached to the door of his office, saying “Simula does it with class”. I guess the

same holds for Haskell except that Haskell replaces classes by type classes.

Armed with singleton types, multiple-parameter type classes, and functional

dependencies we reconsider a problem raised and solved by Danvy (1998) in a

previous pearl. The challenge is to implement a variant of C’s printf function, called

format below, in a statically typed language. Here is an interactive session that

illustrates the problem:

Main〉 :type format (lit "hello world")

String

Main〉 format (lit "hello world")

"hello world"

Main〉 :type format int

Int → String

Main〉 format int 5

"5"

Main〉 :type format (int ^ lit " is " ^ str)

Int → String → String

Main〉 format (int ^ lit " is " ^ str) 5 "five"

"5 is five".

The format directive lit s means emit s literally. The directives int and str instruct

format to take an additional argument of the types Int and String , respectively,

which is then shown. The circumflex “^” is used to concatenate two directives.

The type of format depends upon its first argument, the format directive. In

a language with dependent types, such as Cayenne (Augustsson, 1999), format is

straightforward to implement. This pearl shows that format is equally straightfor-

ward to realize in a language like Haskell that allows the definition of values that

depend on types. Our solution enjoys nice algebraic properties, and is more direct

than Danvy’s one (the relation between the two approaches is detailed in section 5).
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2 Preliminaries: functors

This section briefly reviews the categorical concept of a functor, which is at the heart

of the Haskell implementation of format . For our purposes, it is sufficient to think of

a functor as a combination of a type constructor F of kind � → � and a so-called

mapping function that lifts a given function of type A → B to a function of type

F A → F B . In Haskell, the concept of a functor is captured by the following class

definition:1

class Functor F where

map :: (A → B ) → (F A → F B ).

Instances of this class are supposed to satisfy the two functor laws:

map id = id

map (φ · ψ) = map φ · map ψ.

Typical examples of functors are container types such as lists or trees. In these cases,

the mapping function simply applies its first argument to each element of a given

container, leaving its structure intact. However, the notion of functor is by no means

restricted to container types. For instance, the functional type (A →) for fixed A is

a functor with the mapping function given by post − composition .2

instance Functor (A →) where

map φ x = φ · x

For this instance, the functor laws reduce to id · x = x and (φ · ψ) · x = φ · (ψ · x ).

The functor (A →) will play a prominent rôle in the following sections. In addition,

we require the identity functor and functor composition .

type Id A = A

instance Functor Id where

map = id

type (F · G) A = F (G A)

instance (Functor F ,Functor G) ⇒ Functor (F · G) where

map = map · map

Again, it is easy to see that the functor laws are satisfied. Furthermore, functor

composition is associative and has the identity functor as a unit. As an aside, note

that these instance declarations are not legal Haskell since Id and “·” are not data

types defined by data or by newtype. A data type, however, introduces an additional

data constructor which affects the readability of the code. Instead we employ type

declarations as if they worked as newtype declarations. Section 6 describes the

necessary amendments to make the code run under GHC or Hugs.

1 We slightly deviate from Haskell’s lexical syntax: both type constructors and type variables are written
with an initial upper-case letter (a type variable typically consists of a single upper-case letter)
and both value constructors and value variables are written with an initial lower-case letter. This
convention helps us to keep values and types apart.

2 The so-called operator section (A →) denotes the partial application of the infix operator ‘→’ to A.
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3 Functional unparsing

The Haskell solution is developed in two steps. In this section we show how to

define format as a type-indexed value. The following section then explains how

to implement the type-indexed value using multiple-parameter type classes with

functional dependencies.

Recall that the type of format depends upon its first argument, the format

directive. Clearly, we cannot define such a dependently typed function in Haskell if

we represent directives by elements of a single data type, say,

data Dir = lit String | int | str | Dir ^ Dir .

However, using Haskell’s type classes we can define values that depend on types.

To use this feature we must arrange that each directive possesses a distinct type. To

this end we introduce the following singleton types:

data LIT = lit String

data INT = int

data STR = str

data D1 ^ D2 = D1 ^ D2.

Strictly speaking, LIT is not a singleton type since it accommodates more than one

element. This is unproblematic, however, since the type of format does not depend

on the argument of lit . Given these declarations, the directive int ^ lit " is " ^ str ,

for instance, has type INT ^LIT ^ STR: the structure of the directive is mirrored at

the type level. As an aside, note that the type constructor “^”, which takes singleton

types to singleton types, is isomorphic to the type of pairs. We could have used

pairs in the first place but the right-associative infix data constructor “^” saves some

parentheses.

We can now define format as a type-indexed value of type

formatD :: D → FormatD String .

That is, formatD takes a directive of type D and returns “something” of String

where ‘something’ is determined by D in the following way:

FormatD::� :: � → �

FormatLIT S = S

FormatINT S = Int → S

FormatSTR S = String → S

FormatD1^D2
S = FormatD1

(FormatD2
S ).

The type FormatD is a so-called type-indexed type, a type that depends on a type.

It specifies for each of the directives the additional argument(s) format has to take.

The most interesting clause is probably the last one: the arguments to be added

for D1 ^ D2 are the arguments to be added for D1 followed by the arguments to be

added for D2. The crucial property of FormatD is that it constitutes a functor. This
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can be seen more clearly if we rewrite FormatD in a point-free style.

FormatLIT = Id

FormatINT = (Int →)

FormatSTR = (String →)

FormatD1^D2
= FormatD1

· FormatD2

The implementation of format is straightforward except perhaps for the last case.

formatD :: D → FormatD String

formatLIT (lit s) = s

formatINT int = λi → show i

formatSTR str = λs → s

formatD1^D2
(d1 ^ d2) = formatD1

d1 � formatD2
d2

So formatINT int is just the show function and formatSTR str is just the identity on

String . It remains to define the operator ‘�’, which takes an F String and a G String

to a (F · G) String . We know that F = FormatD1
and G = FormatD2

but this does

not get us any further. The only assumption we may safely take is that F and G

are functorial. Fortunately, using the mapping function on F we can turn a value of

type F String into a value of type F (G String) provided we supply a function that

takes a String , say, s to a value of type G String . We can define a function of the de-

; sired type using the mapping function on G provided we supply a function that

takes a string, say, t to some resulting string. Now, since we have to concatenate the

“output” produced by the two arguments of “�”, the resulting string must be s ++ t .

(�) :: (Functor F ,Functor G) ⇒ F String → G String → (F · G) String

f � g = mapF (λs → mapG (λt → s ++ t) g) f

The operator ‘�’ enjoys nice algebraic properties: it is associative and has the empty

string, "" :: Id String , as a unit. The proof of these properties makes use of the

functor laws and the fact that (String ,++, "") forms a monoid. That said it becomes

clear that the construction can be readily generalized to arbitrary monoids. As

an example, for reasons of efficiency one might want to replace (String ,++, "") by

(ShowS , ·, id ), which features constant-time concatenation.

4 Functional unparsing in Haskell

How can we implement the type-indexed value formatD ::D → FormatD String using

Haskell’s type classes? Clearly, a singleton parameter class won’t do since both D

and FormatD vary. We are forced to introduce a two argument class that additionally

abstracts away from FormatD assigning format the general type D → F String . This

type is, however, too general since now D and F may vary independently of each

other. This additional ‘flexibility’ is, in fact, not very welcome since it gives rise

to severe problems of ambiguity. Fortunately, functional dependencies (Jones, 2000)

save the day as they allow us to capture the fact that F is determined by D .

class (Functor F ) ⇒ Format D F | D → F where

format :: D → F String
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The functional dependency D → F (beware, this is not the function space arrow)

constrains the relation to be functional: if there are instances Format D1 F1 and

Format D2 F2, then D1 = D2 implies F1 = F2. Note that F is additionally restricted

to be an instance of Functor . It remains to supply for each directive D an instance

declaration of the form instance Format D (FormatD ) where format = formatD .

instance Format LIT Id where

format (lit s) = s

instance Format INT (Int →) where

format int = λi → show i

instance Format STR (String →) where

format str = λs → s

instance (Format D1 F1,Format D2 F2) ⇒ Format (D1 ^ D2) (F1 · F2) where

format (d1 ^ d2) = format d1 � format d2

In implementing the specification of section 3 we have simply replaced a type

function by a functional type relation. Before we proceed let us take a look at an

example translation.

format (int ^ lit " is " ^ str)

= {definition of format}
show � " is " � id

= {definition of ‘�’}
mapInt→ (λs → mapId (λt → mapString→ (λu → s ++ t ++ u) id ) " is ") show

= {definition of mapA→ and mapId }
(λs → (λt → (λu → s ++ t ++ u) · id ) " is ") · show

= {algebraic simplifications and β-conversion}
λi → λu → show i ++ " is " ++ u

We obtain exactly the function one would have written by hand. Note that

simplifications along these lines can always be performed at compile time since

the first argument of format is essentially static (apart from lit ’s string argument).

5 Back to continuation-passing style

It is instructive to compare our solution to the original one by Danvy (1998), which

makes use of a continuation and an accumulating argument . Phrased as a Haskell

type class, Danvy’s solution reads:

class Format ′ D F | D → F where

format ′ :: ∀A .D → (String → A) → (String → F A)

instance Format ′ LIT Id where

format ′ (lit s) = λκ out → κ (out ++ s)

instance Format ′ INT (Int →) where

format ′ int = λκ out → λi → κ (out ++ show i )
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instance Format ′ STR (String →) where

format ′ str = λκ out → λs → κ (out ++ s)

instance (Format ′ D1 F1,Format ′ D2 F2) ⇒ Format ′ (D1 ^ D2) (F1 · F2) where

format ′ (d1 ^ d2) = λκ out → format ′ d1 ( format ′ d2 κ) out

format :: (Format ′ D F ) ⇒ D → F String

format d = format ′ d id "".

Two remarks are in order. First, the instances do not require mapping functions,

which explains why Format ′ is not declared a subclass of Functor , though morally

the second argument of Format ′ is a functor. Secondly, format ′ (d1 ^ d2) can be

simplified to format ′ d1 · format ′ d2, where “·” is ordinary function composition. We

will take these points up again in the following section.

So we interpret format d by values of type F String whereas Danvy employs

values of type ∀A . (A → String) → (A → F String). An obvious question is, of

course, whether the two approaches are equivalent. Here are functions that convert

to and fro:

α d = λκ out → map (λs → κ (out ++ s)) d

γ d ′ = d ′ id "".

The coercion function α introduces a continuation and an accumulating string, while

γ supplies an initial continuation and an empty accumulating string.

It is easy to see that γ · α = id :

γ (α d ) = {definition of γ and α}
(λκ out → map (λs → κ (out ++ s)) d ) id ""

= {β-conversion}
map (λs → id ("" ++ s)) d

= {algebraic simplifications}
map id d

= {functor laws}
d .

When we try to prove the converse, α · γ = id ,

α (γ d ′) = {definition of α and γ}
λκ out → map (λs → κ (out ++ s)) (d ′ id ""),

we are immediately stuck. There is no obvious way to simplify the final expres-

sion. Note, however, that d ′ has a polymorphic type, so we can appeal to the

parametricity theorem (Wadler, 1989). The “free theorem” for d ′ :: ∀A . (String →
A) → (String → F A) is that for all φ :: A1 → A2 and for all ε :: String → A1,

map φ · d ′ ε= d ′ (φ · ε). (1)

Loosely speaking, this rule allows us to shift a part of the continuation to the left.
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Continuing the proof we obtain:

= {parametricity (1): φ = λs → κ (out ++ s) and ε = id}
λκ out → d ′ (λs → κ (out ++ s)) "".

We are stuck again. This time we require a rule that allows us to shift a part of the

continuation to the right. Let us assume for the moment that for all ε :: String → A

and for all σ :: String → String ,

d ′ (ε · σ) = d ′ ε · σ. (2)

Given this property, we can finish the proof:

= {proof obligation (2): ε = κ and σ = λs → out ++ s}
λκ out → d ′ (λs → κ s) (out ++ "")

= {algebraic simplifications and η-conversion}
d ′.

It remains to establish the proof obligation. Perhaps unsurprisingly, it turns out

that the rule does not hold in general. The problem is that the accumulating

argument has a too concrete type: it is a string, which we can manipulate at will. In

the following instance, for example, the accumulator is replaced by an empty string.

data CANCEL = cancel

instance Format ′ CANCEL Id where

format ′ cancel = λκ out → κ ""

The effect of cancel is to discard the string produced by the directives to its left.

Main〉 format ′ (int ^ lit " is " ^ cancel ^ str) 5 "five"

"five"

One might argue that the ability to define such a directive is an unwanted

consequence of switching to continuation passing style. In that sense, rule (2) is

really a proof obligation for the programmer. As a closing remark, note that we can

achieve a similar effect in our setting using a “forgetful” variant of “�”:

f � g = map (λs → map (λt → t) g) f

f 
 g = map (λs → map (λt → s) g) f .

6 Applying a functor

Let us finally turn the code of section 4 into an executable Haskell program

(for consistency, we stick to the lexical conventions of section 2). Recall that the

instance declarations involving the type synonyms Id and “·” are not legal since

type synonyms must not be partially applied. Therefore, we are forced to introduce

the two types via newtype declarations:

newtype Id A = ide A

newtype (F · G) A = com (F (G A)).

Alas, now Id and “·” are new distinct types. In particular, the identities Id A = A and

(F · G) A = F (G A) do not hold any more: the type of format (int ^ lit " is "^ str)
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is ((Int →) · Id · (String →)) String rather than Int → String → String . In order to

obtain the desired type we have to apply the functor (Int →) · Id · (String →) to the

type String . This type transformation is implemented by the following three para-

meter type class:

class (Functor F ) ⇒ Apply F A B | F A → B where

apply :: F A → B

instance Apply (A →) B (A → B ) where

apply = id

instance Apply Id A A where

apply (ide a) = a

instance (Apply G A B ,Apply F B C ) ⇒ Apply (F · G) A C where

apply (com x ) = apply (map apply x ).

The intention is that the type relation Apply F A B holds iff F A = B . Consequently,

B is uniquely determined by F and A, which is expressed by the functional

dependency F A → B (again, do not confuse the dependency with a functional

type). The class method apply always equals the identity function since a newtype

has the same representation as the underlying type. Now, renaming the class method

of Format to formatx we arrive at the true definition of format:

format :: (Format D F ,Apply F String A) ⇒ D → A

format d = apply ( formatx d ).

7 Haskell can do it (almost) without type classes

Given the title of the pearl this final twist is perhaps unexpected. We can quite

easily eliminate the Format class by specializing format to the various types of

directives: for each d :: D we introduce a new directive d :: FormatD String given by

d = formatx d – we omit the underlining in the sequel and just reuse the original

names.

lit :: String → Id String

lit s = ide s

int :: (Int →) String

int = λi → show i

str :: (String →) String

str = λs → s

format :: (Apply F String A) ⇒ F String → A

format d = apply d

formatIO :: (Apply F (IO ()) A) ⇒ F String → A

formatIO d = apply (map putStrLn d )

So int is just show (albeit with a less general type), str is just id , and format is just

apply (again with a less general type). Furthermore, instead of ‘^’ we use ‘�’. We

have also defined a variant of format that outputs the string to the standard output

device. This function nicely demonstrates how to define one’s own variable-argument

https://doi.org/10.1017/S0956796802004367 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004367


Functional pearl 943

functions on top of format . Here is an example session that illustrates the use of the

new unparsing combinators:

Main〉 :type (int � lit " is " � str)

((Int →) · Id · (String →)) String

Main〉 :type format (int � lit " is " � str)

Int → String → String

Main〉 format (int � lit " is " � str) 5 "five"

"5 is five"

Main〉 format (show � lit " is " � show ) 5 "five"

"5 is \"five\""

Main〉 format (lit "sum " � show � lit " = " � show ) [1 . . 10] (sum [1 . . 10])

"sum [1,2,3,4,5,6,7,8,9,10] = 55".

Note the use of show in the last two examples. In fact, we can now seamlessly

integrate Haskell’s predefined unparsing function with our own routines. As an

illustration, consider the following directive for unparsing a list of values:

list :: (A →) String → ([A] →) String

list d [ ] = "[]"

list d (a : as) = "[" ++ d a ++ rest as

where rest [ ] = "]"

rest (a : as) = ", " ++ d a ++ rest as .

To format a string, for instance, we can now either use the directive str (emit the

string literally), show (put the string in quotes), or list show (show the string as a

list of characters). Likewise, for formatting a list of strings we can choose between

show , list str , list show , or list (list show ).

Can we also get rid of Id , “·” and consequently of the class Apply? Unfortunately,

the answer is in the negative. Though all directives possess legal Haskell 98 types,

Haskell’s kinded first-order unification gets in the way when we combine the di-

rectives. Loosely speaking, the newtype constructors are required to direct the type

checker. Interestingly, Danvy’s solution seems to require a less sophisticated type sys-

tem: the combinators possess ordinary Hindley-Milner types. However, this comes

at the expense of type safety as a closer inspection reveals. The critical combinator

is the one for concatenating directives, which possesses the following rank − 2 type

(consider the instance declaration for “^” in section 5):

(·) :: ∀F G . (∀X . (String → X ) → (String → F X ))

→ (∀Y . (String → Y ) → (String → G Y ))

→ (∀Z . (String → Z ) → (String → F (G Z ))).

Since “·” amounts to function composition we can generalize (or rather, weaken)

the type to

(·) :: ∀A B C . (B → C )

→ (A → B )

→ (A → C ).

Since Danvy’s combinators furthermore do not employ mapping functions, they

can be made to run in a language with a Hindley-Milner type system. Or course,
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weakening the types has the immediate drawback that, for instance, the non-sensible

call format (const · length · run) where run k = k "" is well-typed.

8 Summary and further reading

Do you have a similar problem that involves capturing dependent types in Haskell?

Here is a brief summary of the overall construction. Let us assume that we are

given a dependently typed function f :: (t :: T ) → F t where F :: T → � is the

dependent type. The central step is to lift the elements of T to the type level such

that for every element t of T there is a corresponding type t̄ . Through the lifting

we obtain a family of functions ft̄ :: t̄ → Ft̄ and a family of types Ft̄ :: � both

indexed by type. These families can be immediately represented in Haskell using a

two argument type class with a functional dependency. If the function f is defined

by structural recursion, then each equation gives rise to an instance declaration (the

corresponding equation of the dependent type F goes into the instance head albeit

in a relational form).

Do you want to delve deeper into the world of singleton types, multiple-parameter

type classes, and functional dependencies? In this case, I recommend reading

Hallgren (2001), Neubauer et al. (2001), Gasbichler et al. (2002) and McBride (2002).
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