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SUMMARY

The 2014 Ebola epidemic was the largest on record. It evidenced the need for improved models
of the spread of Ebola. In this research we focus on modelling Ebola within a small village or
community. Specifically, we investigate the potential of basic Susceptible-Exposed-Infectious-
Recovered (SEIR) models to describe the initial Ebola outbreak, which occurred in Meliandou,
Guinea. Data from the World Health Organization is used to compare the accuracy of various
models in order to select the most accurate models of transmission and disease-induced responses.
Our results suggest that (i) density-dependent transmission and mortality-induced behavioural
changes shaped the course of the Ebola epidemic in Meliandou, while (ii) frequency-dependent
transmission, disease-induced emigration, and infection-induced behavioural changes are not
consistent with the data from this epidemic.
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INTRODUCTION

Ebola is a viral disease that is transmitted through con-
tact with bodily fluids [1]. The 2014 Ebola epidemic,
which began in the village of Meliandou, Guinea on 26
December 2013 [2] was by far the largest Ebola outbreak
on record, and it evidenced the need for improvements
in modelling Ebola. Even some complex models of
the epidemic, which incorporate control measures, over-
estimated the epidemic’s final size and duration. An
example is provided by the Susceptible-Exposed-
Infectious-Recovered (SEIR) model presented in [3]
which considered the efficacy of various control mea-
sures on mitigating the epidemic. Here it was predicted
that the most effective control scenario, which included
100% contact tracing and a 75% reduction in hospital

transmission, could not halt the spread of the disease.
Moreover, in the absence of additional controls, the
CDC estimated the epidemics in Liberia and Sierra
Leone would include >500 000 cases by 20 January
2015 [4]. In contrast, as of 31 March 2015, there were
<10 000 suspected cases in Liberia and <26 000 sus-
pected cases in Guinea, Liberia, and Sierra Leone com-
bined [5].

A common feature of the models above is that they
seek to describe the mature Ebola epidemic at a nation-
al scale. However, at this large scale and late stage, spa-
tial effects, inhomogeneities within the population, and
evolving controls complicate efforts to model the epi-
demic. In order to improve the accuracy of Ebola fore-
casting and better understand the mechanisms through
which this virus spreads, we evaluatemodels of an early
Ebola outbreak in a small village. Our investigation
employs data from the initial outbreak, centred in
Meliandou, Guinea. Because this outbreak developed
with limited external intervention and within a small
village, it is well suited for testing the ability of basic
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SEIR models, which assume a population is well
mixed and homogeneous, to describe the spread of
Ebola. We compare the accuracy of various models
in order to select mechanisms of Ebola transmission
and the population’s response. Our results led us to
select density-dependent transmission and mortality-
induced behavioural changes as important for shaping
the course of an Ebola outbreak.

METHODS

Data from the Meliandou outbreak were taken from
the World Health Organization’s (WHO) website [2].
These data include dates of onset and death for vic-
tims in the Meliandou chain, when available. From
these data we extracted the total number of Ebola
cases (measured as the total number of infectious,
dead, and recovered) through time for comparison
against model simulations. Due to incomplete data,
the date of onset for two patients in generation 5 of
the epidemic is unknown. The date of onset for one
of the patients was assumed to be after 7 February.
This estimate is based on the average incubation per-
iod of the disease, the average duration of the disease,
and the fact that the individuals this person infected
died in early April. The date of onset of the second pa-
tient was assumed to be after the date of onset of the
patient that infected him.

Standard SEIR models, with both frequency- and
density-dependent transmission are constructed accord-
ing to [6].

Model equations

dS
dt

= −λI , (1)

dE
dt

= λI − αE, (2)

dI
dt

= αE − γ

1− ρ
I , (3)

dR
dt

= γI , (4)

dD
dt

= γρ

1− ρ
I . (5)

Here S, E, I, and R denote the number of susceptible,
exposed, infectious, recovered and dead but no longer
infectious individuals in the population, respectively.
The form of λ depends on the type of transmission.
In particular, for frequency-dependent transmission
λ = β(S/N), and for density-dependent transmission
λ = β(S/A). Where A denotes the area over which the
epidemic occurs, N= S +E + I +R, and the value of
the parameter β is model-specific. Because of the rela-
tively short time over which the epidemic evolves, we
do not consider natural deaths and births in these
models. It is also important to note that these models
are considerably simpler than many other models of
Ebola. In particular, they differ from more complex
models of Ebola in that they do not include a separate
class for those who are both dead and infectious.
Instead the infectious class may be considered to in-
clude both living and dead infectious or, alternatively,
the model may be considered to neglect infection
through contact with the dead. In these models, the
time to leave the infectious class is determined by
the time to recover (1/γ) and the probability of death
(ρ). For the baseline parameter values from Table 1,
this leads to an average time to death of about 6·8
days. For comparison, the time from symptom onset
to death was reported as 6·4 ± 5·3 days in Guinea [1].

To parameterize the model with density-dependent
transmission, we take the most relevant measure of
population density as floor area per individual within
a family dwelling. This parameter is estimated using

Table 1. Parameters

Parameter Explanation Value Range Ref.

1/α Average latent period* 10·7 day–1 2–19·4 [1]
ρ Probability of death 0·707 0·667–0·743 [1]
1/λ Average time to recovery† 16·3 day–1 10·2–22·4 [1]
R0 Reproductive number 1·71 1·44–2·01 [1]
N Population size 300 233–720 [8–10]

D Population density
1
5·5

1
3·5−

1
12·6 [7]

* The average latent period is taken as that for single-day exposures.
†The average time to recovery is taken as the average time from symptom onset to hospital discharge.
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[7], which reports the floor area per individual in sev-
eral African nations. Since no parameter value is
available for Guinea, we take the baseline value of
this parameter from that of the closest nation for
which data is available, Ghana, i.e. 5·5 [7].

Estimates of the size of the population of
Meliandou vary. In particular, Vatican Radio reports
that Meliandou was home to approximately 700 indi-
viduals before the epidemic and approximately 400
individuals after the epidemic [8], while a detailed
map produced by the European Commission esti-
mates that the entire region of interest, which includes
two other villages of a similar size, was inhabited by
approximately 719 individuals as of January 2014
[9]. In retrospect, the WHO has reported that the vil-
lage includes only 31 households [10]. Assuming 10
members per household, the population size is then
around 300, which is consistent with the data from
the European Commission. Hence, we take the base-
line population of Meliandou as 300.

The model parameters α, γ, R0 and ρ are taken from
a WHO publication [1]. These parameters are then
used to estimate the value of β, as follows. In case of
frequency-dependent transmission, we use

R0 = β(1− ρ)
γ

.

In case of density-dependent transmission, we use

R0 = β(1− ρ)d
γ

,

where d denotes the initial density of the population in
terms of individuals/m2 of floor space.

In addition to the basic SEIR models described
above, we consider models with disease-induced emi-
gration. Although this mechanism is specific to
small, well-defined populations, it has the effect of
limiting the access of the infectious to the susceptible
and so is, in some ways, similar to hospitalization.
In developing these models we assume that the rate
of emigration depends on either the number of infec-
tious or the number of dead individuals. Specifically,
in the case of density-dependent transmission, a term
of the form –u(I/A)X or –u(D/A)X is added to the dif-
ferential equation for variable X, for X = S, E, I, R, in
order to model emigration in response to infection or
mortality, respectively. Analogous terms are added to
the equations of the basic frequency-dependent model
in order to create the corresponding models with
frequency-dependent emigration. In fitting these

models to the data, only the parameter u is varied.
The other parameters, including β, remain fixed.

Finally, we consider the potential of behavioural
changes to impact the course of an epidemic:
Individuals may change their behaviour in response
to the epidemic in an attempt to avoid infection. As
was the case for the models with emigration, we con-
sider models in which individuals change their behav-
iour in response to either the infectious or the dead.
Furthermore, we assume that these behavioural
changes lower the basic reproductive ratio of the dis-
ease according to either

R0 = Rm

kI/A+ 1
or R0 = Rm

kD/A+ 1
,

in case of density-dependent transmission, and
either

R0 = Rm

kI/N + 1
or R0 = Rm

kD/N + 1
,

in case of frequency-dependent transmission. In
these models, Rm represents the reproductive ratio
of the disease in a population that is unaware of
the presence of either an infectious or deadly patho-
gen, i.e. in the absence of any extra precautionary
measures, and k determines the sensitivity of the
population’s response to the presence of the infec-
tious or dead. In simulating these models, R0 is
recalculated and then used to update β at each
time step.

Because estimates of the parameters Rm, k, and u
are not available, these parameters are chosen to fit
the data with the stipulation that the optimal param-
eter values must be biologically meaningful. Since
the model parameters are uncertain, in some simula-
tions the parameters for which estimates are available
are also chosen to fit the data; however, these para-
meters are constrained to lie in a given range. For
the parameters provided in [1], parameter ranges are
determined by 95% confidence intervals (in the case
of R0) or mean values ±1 standard deviation (in the
case of γ and α). The other parameter ranges are deli-
neated by the maximal and minimal values of the
available parameter estimates. The optimal param-
eters are chosen to minimize the squared error be-
tween the model and the data (Matlab, lsqnlin). The
data is a time series of cumulative cases derived
from data provided by the WHO, augmented with
an additional data point at 500 days, in order to pen-
alize parameterizations that overestimate the final size
of the epidemic. The models are simulated in Matlab,
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and model predictions of the extent and duration of
the epidemic in Meliandou are compared to the data.

RESULTS

The initial Ebola outbreak that began in the village of
Meliandou, Guinea on 26 December 2013 [2] is
reported to have ended in April 2014 with a total of
about 21 cases [1, 2, 11]. Simulations of this epidemic
using the basic SEIR models with either frequency-
or density-dependent transmission reveal that both
models overestimate the size and duration of the epi-
demic. Indeed, when parameterized with the baseline

parameter values, the model with frequency-dependent
transmission predicts that the epidemic will include
approximately 277 cases which represents approxi-
mately 92% of the population, while the model
with density-dependent transmission predicts that
the epidemic will include approximately 209 cases,
representing about 70% of the population (see Fig. 1a).
However, both models provide a reasonably good fit to
the initial epidemic (see Fig. 1b). One explanation for
the poor fits of the models to the data is that the baseline
parameter values are not representative of the epidemic
in Meliandou. However, optimizing the parameters
within the given parameter ranges, does not significantly

Fig. 1. (a) Simulations of the basic SEIR models with either density-dependent (green) or frequency-dependent (blue)
transmission. The red ×s denote the data. (b) The early epidemic.
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improve the fit to the data (not shown). Moreover, in
optimizing the model parameters, the fit to the initial
epidemic is lost.

A significant portion of Meliandou’s population is
reported to have fled in response to the epidemic
[1, 11], and such a removal of individuals from the popu-
lation could be important for shaping the course of an
Ebola epidemic within a small village or community.
Hence we augment the basic SEIR models to account

for disease-induced emigration. In so doing, we con-
sider both infection- and morality-induced emigration
(see Methods section). Simulations of the resulting
models, with the parameter, u, that determines the
rate of emigration optimized, reveal that, after taking
emigration into account, all models can accurately
predict the epidemic’s size and duration (see Fig. 2).
However, the frequency-dependent model with either
type of disease-induced emigration also predicts that

Fig. 2. (a) Simulations of the models with infection-induced emigration. For the density-dependent model u* = 15·8764 per
individual per day, the error is E= 116·6211, and the final population size is Nf= 108 individuals. For the
frequency-dependent model u* = 4·8833 per individual per day, E= 99·3366, and Nf= 0 individuals. (b) Simulations of the
models with mortality-induced emigration. For the density-dependent model u* = 3·7825 per individual per day, the error
is E= 86·4491, and the final population size is Nf= 0 individuals. For the frequency-dependent model u* = 1 per individual
per day, E= 82·4230, and Nf= 0 individuals.
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Meliandou will be abandoned. The density-dependent
model with mortality-induced emigration also predicts
that Meliandou will be abandoned. In contrast, the
density-dependent model with infection-induced emi-
gration predicts approximately 36% of the population
remains. Thus, of the models tested here, the model
with density-dependent transmission and infection-
induced emigration appears the best able to match
the dynamics of the epidemic while preserving the vil-
lage of Meliandou. In order to further explore the rela-
tionship between the rate of fleeing, the mean squared
error, and the final population size for the models

with infection-induced emigration, we vary the param-
eter u between 0·1u* and u*, where u* denotes the op-
timal value of u. The results are shown in Figure 3,
which plots the final population size vs. the mean
squared error for each model. Looking at Figure 3
we see that the frequency-dependent model with
infection-induced emigration is unable to simultaneously
preserve the population of Meliandou and describe the
epidemic’s dynamics.

Although the model with infection-induced emigra-
tion and density-dependent transmission provides a
good approximation of the duration and extent of

Fig. 3. Final population size vs. mean squared error for (a) frequency-dependent and (b) density-dependent models of
transmission, with infection-induced emigration.
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the Meliandou outbreak, it does not capture the initial
rapid increase in cases. Hence we develop additional
models to test the hypothesis that disease-induced
alterations in behaviour can explain these dynamics.
We formulate models in which the basic reproductive
number, and hence the transmission rate, falls as the
frequency or density of the infectious or dead rises.

The models in which the transmission rate varies
with the frequency or density of infectious do not fit
the data (see Fig. 4). Indeed, in this case, the model
with frequency-dependent transmission predicts the
epidemic will slowly die out leaving a final population
of about 277 individuals. The results are similar in the
case of density-dependent transmission.

In contrast, the models in which the transmission
rate varies with mortality provide an excellent fit to
the data (see Fig. 5). In fact, these models successfully
capture both the initial rapid increase in cases and the
size and duration of the epidemic. The error of the
model with density-dependent transmission is some-
what lower than that with frequency-dependent trans-
mission, E = 8·3390 vs. E = 33·2964. The optimal
values of Rm for the models are similar; Rm= 5·8479
for the frequency-dependent model and Rm= 3·3924
for the density-dependent model. This parameter
represents the basic reproductive number for a popu-
lation that is free of disease-induced mortality, i.e. it
is the number of secondary infections that would re-
sult from a single infectious individual being

introduced into an entirely susceptible population
that is unaware of the presence of a fatal disease.
Although these values of Rm are somewhat larger
than the estimated basic reproductive number of
Ebola, they are not unreasonably large. Indeed, in
the absence of any precautions it is reasonable that a
single infectious individual could infect 3–5 others
through the course of family-provided care and trad-
itional funeral.

DISCUSSION

In this paper, we investigated the ability of simple
SEIR-type models to describe the 2014 Ebola out-
break in the village of Meliandou in order to identify
fundamental mechanisms that may shape the course
of a local Ebola outbreak. We tested the accuracy of
two types of transmission, (i) density-dependent trans-
mission and (ii) frequency-dependent transmission,
two types of response, (i) emigration and (ii) behaviour-
al changes, and two response triggers, (i) the infectious
and (ii) the dead. As is the case for the large-scale epi-
demic, we found that basic SEIR models, which do not
include a population’s response to the epidemic, greatly
overestimate the size of the Meliandou epidemic, while
SEIR models that describe how individuals respond to
the epidemic can simultaneously capture both the epi-
demic’s final size and dynamics. Specifically, models
that include mortality-induced behavioural changes

Fig. 4. Simulations of the models with R0 dependent on the infectious. For the density-dependent model the optimal value
of k is k* = 5·1977 × 10−5, the maximal basic reproductive ratio is R∗

m = 1·0109, the error is E = 422·7983, and the final
population size is Nf= 281 individuals. For the frequency-dependent model: k* = 0·0133, R∗

m = 0·9873, E= 440·6276, and
Nf= 277 individuals. The frequency-dependent model is shown in blue, the density-dependent model is shown in green.
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are able to closely approximate the rapid initial spread,
duration, and final size of the epidemic. Our experi-
ments also suggest that density-dependent transmission
may provide a more accurate model of Ebola transmis-
sion. This finding is of particular interest since the form
of transmission can impact control. For example, if
Ebola transmission is primarily density-dependent, a
successful vaccination campaign would be aimed at
lowering the density, rather than the frequency, of sus-
ceptible individuals. The appropriateness of frequency-
or density-dependent transmission for modelling
disease transmission has been a topic of debate [12].
Although frequency-dependent transmission is often
used to model human diseases [6], we hypothesize that
frequency-dependent transmissionmaybe inappropriate
formodelling diseases likeEbola that are spread through
close contact and have a high mortality rate. Indeed,
while frequency-dependent transmission assumes a con-
stant contact rate, the average contact rate in a popula-
tion undergoing an Ebola-like epidemic is likely to fall.
Because Ebola transmission requires close contact,
which occurs primarily between family members, con-
tacts that are lost on the death of an Ebola victim cannot
be regenerated on the timescale over which the epidemic
evolves.Although behavioural changes can also result in
falling contact rates, the fact that in each of our simula-
tions the frequency-dependent model is either excluded
from consideration because it predicts the population

will fall to zero or is outperformed by the density-
dependent model supports the idea that Ebola transmis-
sion is density-dependent.

Although we have gained some insights into the
spread of Ebola at a local scale, it remains to develop
a large-scale model of an Ebola epidemic. The model
developed here is certainly not intended to describe
Ebola transmission at this scale; however, its
large-scale predictions may help guide future model-
ling efforts. Hence, taking the values of k and Rm

from our study of Meliandou, we simulated an
Ebola epidemic in the nation of Guinea. For this
simulation, we took the total population size as
11 948 726, which represents this nation’s population
in 2013 [13]. The model predicts that Guinea would
experience a rather short, though severe epidemic.
This epidemic would end after approximately 250
days with a total of almost 800 000 cases, which repre-
sents almost 7% of the population. It is interesting to
compare these predictions with those of the models pre-
sented in [3]. In particular, while the previous models
tend to overestimate the duration of the epidemic, this
model underestimates the duration of the epidemic.
The speed with which this model predicts the disease
will spread is likely overestimated due to the negligence
of space.The large numberof predicted cases can be con-
sidered as a worst-case approximation of the epidemic’s
final size, i.e. in the absence of a systematic

Fig. 5. Simulations of the models with R0 dependent on mortality. For the density-dependent model the optimal value of
k is k* = 817·1867, the maximal basic reproductive ratio is R∗

m = 3·3924, the error is E= 8·3390, and the final population
size is Nf= 285 individuals. For the frequency-dependent model: k* = 401 ·7542, R∗

m = 5·8479, E= 33·2964, and Nf= 287
individuals. The frequency-dependent model is shown in blue, the density-dependent model is shown in green.
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government-led effort to control the spread of the dis-
ease. While spatial effects are likely to be important for
determining the speed of an epidemic, control measures,
such as contact tracingand education, are likely tobe im-
portant for determining the final size of an epidemic. In
order to better describe the spread of the epidemic, the
simple model selected here could be used to construct a
meta-population model. modelling control efforts, on
the other hand, would require the introduction of add-
itional parameters and/or compartments. For example,
in a parsimonious model of contact tracing, individuals
might exit the exposed class in order to enter a quaran-
tine class. Here, the rate of exit could be determined by
the probability of being traced before the onset of the in-
fectious stage. The impact of education could be mod-
elled in multiple ways. Education could prompt
individuals to leave the infectious class for the quaran-
tine class, or it could lower the transmission rate. In
the latter case, the impact of education on the transmis-
sion rate could be included in the simple model above.
For example, education could function to increase the
sensitivity of the population to the death and/or infection
of individuals.

In summary, we have used mathematical models to
select mechanisms that are important for the local
spread of Ebola. In the future these mechanisms
may be important for designing control measures
and designing large-scale models of Ebola in order
to improve Ebola forecasting.
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