Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T14:58:21.068Z Has data issue: false hasContentIssue false

Physical properties of porous titania films composed of nanoparticle aggregates

Published online by Cambridge University Press:  01 July 2006

Oluwatosin Ogunsola
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
Jinwon Park
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100
Gil Lee*
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2100
Sheryl Ehrman*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
*
a)Address all correspondence to these authors. e-mail: gl@ecn.purdue.edu
b)Address all correspondence to these authors. e-mail: sehrman@eng.umd.edu
Get access

Abstract

Highly porous films of titania composed of nanoparticle aggregates were synthesized via gas-to-particle conversion and particle-precipitated chemical vapor deposition. The films were annealed in air for 12 h at temperatures ranging from 400 to 1000 °C. Atomic force microscopy was used to determine the Young's modulus and hardness of both the as-synthesized and annealed films. The Young's modulus and hardness of the as-synthesized films were 4.0 ± 0.4 MPa and 0.026 ± 0.003 MPa, respectively. There was no significant change in either modulus or hardness upon annealing until the films were annealed at a temperature of 1000 °C. The Young's modulus and hardness of these films were 56 ± 6 MPa and 0.10 ± 0.01 MPa, respectively. Results from dynamic light scattering measurements of aggregate size and surface area measurements suggest that annealing at 1000 °C leads to increased networking between distinct nanometer-scale titania aggregates, which strengthens the film.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baraton, M., Merhari, L., Wang, J., Gonsalves, K.E.: Investigation of the TiO2/PPV nanocomposite for gas sensing applications. Nanotechnology 9, 356 (1998).CrossRefGoogle Scholar
2.Tang, H., Prasad, K., Sanjines, R., Levy, F.: TiO2 anatase thin films as gas sensors. Sens. Actuators B 26, 71 (1995).CrossRefGoogle Scholar
3.Yu, C.J., Ho, W., Lin, J., Yip, H., Wong, P.K.: Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296 (2003).CrossRefGoogle ScholarPubMed
4.Yu, J., Chan, L.: Photocatalytic degradation of a gaseous organic pollutant. J. Chem. Educ. 75, 750 (1998).CrossRefGoogle Scholar
5.Ohko, Y., Hashimoto, K., Fujishima, A.: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A 101, 8057 (1997).CrossRefGoogle Scholar
6.Grätzel, M., Huang, S.Y., Kavan, L., Exnar, I.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142 (1995).Google Scholar
7.Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M.: Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157 (1997).CrossRefGoogle Scholar
8.Takeuchi, K., Negishi, N.: Structural changes of transparent TiO2 thin films with heat treatment. Mater. Lett. 38, 150 (1999).Google Scholar
9.Chan, C.K., Porter, J.F., Li, Y., Guo, W., Chan, C.: Effects of calcinations on the microstructures and photocatalytic properties of nanosized titanium dioxide powders prepared by vapor hydrolysis. J. Am. Ceram. Soc. 82, 566 (1999).CrossRefGoogle Scholar
10.Lagemaat, J., Benkstein, K.D., Frank, A.J.: Relation between particle-coordination number and porosity in nanoparticle films: Implications to dye-sensitized solar cells. J. Phys. Chem. B 105, 12433 (2001).CrossRefGoogle Scholar
11.Cass, M.J., Qiu, F.L., Walker, A.B., Fisher, A.C., Peter, L.M.: Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J. Phys. Chem. B 107, 113 (2003).CrossRefGoogle Scholar
12.Biswas, P., Kulkarni, P.: A Brownian dynamics simulation to predict morphology of nanoparticle deposits in the presence of interparticle interactions. Aerosol Sci. Technol. 38, 541 (2004).Google Scholar
13.Coble, R.L., Kingery, W.D.: Effect of porosity on physical properties of alumina. J. Am. Ceram. Soc. 39, 377 (1956).CrossRefGoogle Scholar
14.Dean, E.A., Lopez, J.A.: Empirical dependence of elastic moduli on porosity for ceramic materials. J. Am. Ceram. Soc. 66, 366 (1983).CrossRefGoogle Scholar
15.Rice, R.W.: Evaluation and extension of physical property-porosity models based on minimum solid area. J. Mater. Sci. 31, 102 (1996).CrossRefGoogle Scholar
16.Herakovich, C.T., Baxter, S.C.: Influence of pore geometry on the effective response of porous media. J. Mater. Sci. 34, 1595 (1999).CrossRefGoogle Scholar
17.Woignier, T., Reynes, J., Alaoui, A., Beurroies, I., Phalippou, J.: Different kinds of structure in aerogels: Relationships with the mechanical properties. J. Non-Cryst. Solids 241, 45 (1998).CrossRefGoogle Scholar
18.Moner-Girona, M., Roig, A., Molins, E., Martinez, E., Esteve, J.: Micromechanical properties of silica aerogels. App. Phys. Lett. 75, 653 (1999).CrossRefGoogle Scholar
19.Ma, H., Prevost, J., Jullien, R., Scherer, G.: Computer simulation of mechanical structure-property relationship of aerogels. J. Non-Cryst. Solids 285, 216 (2001).CrossRefGoogle Scholar
20.Roberts, A.P., Garboczi, E.J.: Elastic properties of model random three-dimensional open-cell solids. J. Mech. Phys. Solids 50, 33 (2002).CrossRefGoogle Scholar
21.Roberts, A.P., Garboczi, E.J.: Elastic properties of model porous ceramics. J. Am. Ceram. Soc. 83, 3041 (2000).CrossRefGoogle Scholar
22.Gross, J., Reichenauer, G., Fricke, J.: Mechanical properties of SiO2 aerogels. J. Phys. D 21, 1447 (1988).CrossRefGoogle Scholar
23.Adachi, T., Sakka, S.: Dependence of the elastic moduli of porous silica gel prepared by the sol-gel method on heat treatment. J. Mater. Sci. 25, 4732 (1990).CrossRefGoogle Scholar
24.Friedlander, S.K., Rong, W., Pelling, A.E., Ryan, A., Gimzewski, J.K.: Complementary TEM and AFM force spectroscopy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett. 4, 2287 (2004).Google Scholar
25.Koleske, D.D., Lee, G.U., Gans, B.I., Lee, K.P., DiLella, D.P., Wahl, K.J., Barger, W.R., Whitman, L.J., Colton, R.J.: Design and calibration of a scanning force microscope for friction, adhesion, and contact potential studies. Rev. Sci. Instrum. 66, 4566 (1995).CrossRefGoogle Scholar
26.Hues, S.M., Colton, R.J., Meyer, E., Guntherodt, H.J.: Scanning-probe microscopy of thin films. MRS Bull. 18(1), 41 (1993).CrossRefGoogle Scholar
27.Nguyen, Q.T.: Hybrid gas-to-particle conversion and chemical vapor deposition for production of high surface area films. Ph.D. Thesis, University of Maryland, College Park, MD, 2003.Google Scholar
28.Yudin, I.K., Nikolaenko, G.L., Kosov, V.I., Agayan, V.A., Anisimov, M.A., Sengers, J.V.: A compact photon-correlation spectrometer for research and education. Int. J. Thermophys. 18, 1237 (1997).CrossRefGoogle Scholar
29.Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988 (2004).CrossRefGoogle Scholar
30.Warmack, R.J., Zheng, X.Y., Thundat, T., Allison, D.P.: Friction effects in the deflection of atomic force microscope cantilevers. Rev. Sci. Instrum. 65, 394 (1994).CrossRefGoogle Scholar
31.Arnold, M., Boccaccini, A.R., Ondracek, G.: Prediction of the poisson's ratio of porous materials. J. Mater. Sci. 31, 1643 (1996).CrossRefGoogle Scholar
32.Field, J.S., Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
33.Friedlander, S.K.: Smoke, Dust and Haze (Oxford, New York, 2000).Google Scholar
34.Zeitler, V.A., Brown, C.A.: The infrared spectra of some Ti–O–Si, Ti–O–Ti and Si–O–Si compounds. J. Phys. Chem. 61, 1174 (1957).CrossRefGoogle Scholar
35.McClune, W. F.: Hanawalt Search Manual for Experimental Patterns: Inorganic Phases. (International Centre for Diffraction Data, Newton Square, Pennsylvania, 2001).Google Scholar
36.Burnham, N.A., Colton, R.J.: Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A 7, 2906 (1989).CrossRefGoogle Scholar
37.Larson, I., Drummond, J., Chan, D.Y., Grieser, F.: Direct force measurements between TiO2 surfaces. J. Am. Chem. Soc. 115, 11885 (1993).CrossRefGoogle Scholar
38.Ducker, W.A., Senden, T.J.: Measurement of forces in liquids using a force microscope. Langmuir 8, 1831 (1992).CrossRefGoogle Scholar
39.Mayo, M., Siegel, R., Narayanasamy, A., Nix, W.: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
40.Zimmerman, R.W.: Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12, 17 (1991).CrossRefGoogle Scholar
41.Ramakrishnan, N., Arunachalam, V.S.: Effective elastic moduli of porous ceramic materials. J. Am. Ceram. Soc. 76, 2745 (1993).CrossRefGoogle Scholar
42.Gibson, L.J. and Ashby, M.F.: The mechanics of three dimensional cellular materials. Proc. R. Soc. London A 382, 43 (1982).Google Scholar
43.Roberts, A.P.: Morphology and thermal conductivity of model organic aerogels. Phys. Rev. E 55, R1286 (1997).CrossRefGoogle Scholar
44.Ogawa, K., Vogt, T., Ullmann, M., Johnson, S., Friedlander, S.K.: Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J. Appl. Phys. 87, 63 (2000).CrossRefGoogle Scholar
45.Froeschke, S., Kohler, S., Weber, A.P., Kasper, G.: Impact fragmentation of nanoparticle agglomerates. Aerosol Sci. 34, 275 (2003).CrossRefGoogle Scholar
46.Nakade, S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., Yanagida, S.: Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J. Phys. Chem. B 107, 8607 (2003).CrossRefGoogle Scholar
47.Kim, H.P., Bush, M.B.: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11, 361 (1999).CrossRefGoogle Scholar