Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-13T19:07:13.064Z Has data issue: false hasContentIssue false

Excimer laser cleaning, annealing, and ablation of β–SiC

Published online by Cambridge University Press:  31 January 2011

Pehr E. Pehrsson
Affiliation:
Surface Physics Branch, Code 6834, Electronics Technology Division, Naval Research Laboratory, Washington, DC 20375–5000
Ray Kaplan
Affiliation:
Surface Physics Branch, Code 6834, Electronics Technology Division, Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

The effects of ArF excimer laser irradiation on β–SiC in UHV were examined for a variety of laser intensities and pulse densities. The samples were analyzed in situ with Auger and electron loss spectroscopies, and ex situ with x-ray photoelectron spectroscopy. With progressively higher laser intensities, the SiC surface was initially cleaned of carbon and oxygen surface contaminants, and the Si–LVV Auger lineshape changed from the oxide to the carbide. Still higher laser intensities then partially reordered the surface. A carbon surface layer developed, and the C-KLL lineshape transformed from carbidic to graphitic. Finally, the surface segregated into an almost pure Si layer and an underlying carbon-rich layer, followed by ablation and pitting. Bulk heating during laser exposure may enhance reordering of sputtered or implanted material.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kelner, G.Binari, S.Sieger, K. and Kong, H.IEEE Trans. Electron Devices Lett. 8, 428 (1987).CrossRefGoogle Scholar
2(a)Pettenpau, E.Munch, W. von, and Ziegler, G.Inst. Phys. Conf. Ser. No. 53, 21 (1980); (b)R.B. Campbell IEEE Trans, on Ind. Elec. IE-29 (2), 124 (1982); (C.K. Yoshida and K. Sasaki, Appl. Phys. Lett. 46 (8), 766 (1985); (d)Y. Tawada and J. Takada, Appl. Phys. Lett. 48 (9), 584 (1986); (e)J. Ryu, H. J. Kim, and R. F. Davis, Appl. Phys. Lett. 47 (8), 850 (1985); "'Silicon Carbide-1973, edited by R. C. Marshall, J.W. Faust, and C. E. Ryan (Univ. of S. Carolina, Columbia, SC, 1974).Google Scholar
3Miyoshi, K., Buckley, D. H., and Srinivisan, M., Ceramic Bulletin 62 (4), 495 (1983).Google Scholar
4Kaplan, R., J. Appl. Phys. 56 (6), 1636 (1984).CrossRefGoogle Scholar
5Kaplan, R. and Parrill, T. M.Surf. Sci. 165, L45 (1986).CrossRefGoogle Scholar
6Dayan, M.J. Vac. Sci. Technol. A4 (1), 38 (1986).CrossRefGoogle Scholar
7Dayan, M.J. Vac. Sci. Technol. A3 (2), 361 (1985).CrossRefGoogle Scholar
8Bellina, J.J.Ferrante, J. and Zeller, M.V.J. Vac. Sci. Technol. A4 (3), 1692 (1986).CrossRefGoogle Scholar
9Bellina, J.J. and Zeller, M.V.Appl. Surf. Sci. 25, 380 (1986).CrossRefGoogle Scholar
10Jorgenson, B. and Morgen, P.J. Vac. Sci. Technol. A4 (3), 1701 (1986).CrossRefGoogle Scholar
11Morgen, P.Seaward, K. L. and Barbee, T. W.J. Vac. Sci. Technol. A3 (6), 2108 (1985).CrossRefGoogle Scholar
12Adachi, S.Mohri, M. and Yamashina, T.Surf. Sci. 161, 479 (1985).CrossRefGoogle Scholar
13Mizokawa, Y.Geib, K. M. and Wilmsen, C. W.J. Vac. Sci. Technol. A4 (3), 1696 (1986).Google Scholar
14Lee, W. Y.J. Appl. Phys. 51 (6), 3365 (1980).CrossRefGoogle Scholar
15Wood, R. F. and Lowndes, D. H.Cryst. Latt. Def. and Amorph. Mat. 12, 475 (1985).Google Scholar
16Violin, E. E.Demakov, K.D.Kal'nin, A. A., Nolbert, F.Pota-pov, E. N., and Tairov, Y. M.Sov. Phys. Solid State 26 (5), 960 (1984).Google Scholar
17a)Makarov, V. V.Sov. Tech. Phys. Lett. 6 (8), 435 (1980); (b)V. V. Makarov, T. Tuomi, K. Naukkarinen, M. Luomajarvi, and M. Riihonen, J. de Phys. C4, 11 (1980); (C)V. V. Makarov, T. Tuomi, K. Naukkarinen, M. Luomajarvi, and M. Riihonen, Appl. Phys. Lett. 35 (12), 922 (1979).Google Scholar
18Porte, L.J. Appl. Phys. 60 (2), 635 (1986).CrossRefGoogle Scholar
19Fogarassy, E. P.Lowndes, D. H.Narayan, J. and White, C. W.J. Appl. Phys. 59 (4), 1323 (1982).Google Scholar
20a)Dawar, A. L.Jagadish, C.Ferdinand, K. V.Kumar, Anil, and Mathur, P.C., Appl. Surf. Sci. 22/23, 846 (1985); b)H. S. Reehal J.M. Gallego and C. B. Edwards, Appl. Phys. Lett. 40 (3), 258 (1982).Google Scholar
21(a)Bermudez, V.M.J. Vac. Sci. Technol. 20 (1), 51 (1982); b)D.M. Zehner, C. W. White, and G.W. Ownby, Appl. Phys. Lett. 36 (1), 57 (1980).CrossRefGoogle Scholar
22Choyke, W. J. and Patrick, L., Phys. Rev. 187 (3), 1041 (1969).CrossRefGoogle Scholar
23(a)young, R. T., Narayan, J., Christie, W.H.van der Leeden, G. A., Levatter, J.I., and Cheng, L. J. Solid State Technol. 183, November 1983; b)W. Wesch, E. Wendler, G. Gotz, K. Unger, H. Roppischer, and Chr. Resagk, Phys. Status Solidi B 130, 5 (1985).Google Scholar
24a)Bhattacharya, P.K.Kansara, M.J.Nathan, T. P. S.Singh, P., and Wagh, A. G.Appl. Phys. A39, 147 (1986); (b)S. Lazare and R. Srinivisan, J. Phys. Chem. 90, 2124 (1986).Google Scholar
25Lurie, P.G. and Wilson, J.M.Surf. Sci. 65, 476 (1977).CrossRefGoogle Scholar
26Papagno, L. and Caputi, L. S.Surf. Sci. 125, 530 (1983).CrossRefGoogle Scholar
27Ibach, H. and Rowe, J.E.Phys. Rev. B10 (2), 710 (1974).CrossRefGoogle Scholar
28Weissmantel, C., Bewilogua, K., Schurer, C., Breuer, K., and Zscheile, H., Thin Solid Films 61, LI (1979).Google Scholar
29(a)Sanders, P., Kaiser, U., Altebochwinkel, M., Weidmann, L., Ben-ninghoven, A., Sah, R.E. and Koidl, P., J. Vac. Sci. Technol. A5 (4), 1470 (1987); (b)Y. Katayama, T. Shimada, and K. Usami, Phys. Rev. Lett. 46 (17), 1146 (1981).CrossRefGoogle Scholar
30Bermudez, V. M.Appl. of Surf. Sci. 17, 12 (1983).CrossRefGoogle Scholar
31Muehlhoff, L., Choyke, W.J.Bozack, M.J. and Yates, J.T.J. Appl. Phys. 60 (8), 2842 (1986).CrossRefGoogle Scholar
32Boszo, F., Muehlhoff, L., Trenary, M., Choyke, W. J. and Yates, J. T.J. Vac. Sci. Technol. A2 (3), 1271 (1984).Google Scholar
33Bommel, A. J. von, Crombeen, J. E. and Tooren, A. Van, Surf. Sci. 48, 463 (1975).Google Scholar
34Rothschild, M., Arnone, C., and Ehrlich, D. J.J. Vac. Sci. Technol. B4 (1), 310 (1986).CrossRefGoogle Scholar
35(a)Katayama, Y., Usami, K., and Shimada, T., Phil. Mag. B43 (2), 283 (1981); (b)G.H. Bauer, H.D. Mohring, G. Bilger, and A. Eicke, J. Non-Cryst. Solids 77-78, 873 (1985); (C)G. Chen, F. Zhang, and X. Xu, J. Non-Cryst. Solids 59-60, 577 (1983).CrossRefGoogle Scholar
36Morimoto, A., Kataoka, T., Kumeda, M., and Shimizu, T., Phil. Mag. B50 (4), 517 (1984).CrossRefGoogle Scholar
37Fiori, C. and Devine, R.A.B.Appl. Phys. Lett. 47 (4), 361 (1985).CrossRefGoogle Scholar
38Nesbit, L. A.Appl. Phys. Lett. 46, 38 (1985).CrossRefGoogle Scholar
39Edmond, J.A.Palmour, J. W. and Davis, R. F.J. Electrochem. Soc: Solid State Sci. and Technol. 650, March 1986.Google Scholar
40Sugiura, J., Lu, W. J.Cadien, K. C. and Steckl, A. J.J. Vac. Sci. Tech-nol. B4 (1), 349 (1986).CrossRefGoogle Scholar