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Note on Exchange Phenomena in the Thomas Atom. By P. A. M.
DIRAC, Ph.D., St John's College.

[Read 19 May 1930.]

Introduction.

For dealing with atoms involving many electrons the accurate
quantum theory, involving a solution of the wave equation in
many-dimensional space, is far too complicated to be practicable.
One must therefore resort to approximate methods. The best of
these is Hartree's method of the self-consistent field *. Even this,
however, is hardly practicable when one has to deal with very
many electrons, so that one then requires a still simpler and rougher
method. Such a method is provided by Thomas' atomic model f, in
which the electrons are regarded as forming a perfect gas satisfying
the Fermi statistics and occupying the region of phase space of lowest
energy. This region of phase space is assumed to be saturated, with
two electrons with opposite spins in each volume (27rA)3J, and the
remainder is assumed to be empty. Although this model hitherto
has not been justified theoretically, it seems to be a plausible ap-
proximation for the interior of a heavy atom and one may expect
it to give with some accuracy the distribution of electric charge
there.

The method of the self-consistent field has recently been estab-
lished on a very much better theoretical basis in a paper by Fock§,
which shows how one can take into account the exchange pheno-
mena between the equivalent electrons. Fock shows that if one takes
the best approximation to the many-dimensional wave function that
is of the form of a product of a number of three-dimensional wave
functions, one for each electron, then the three-dimensional wave
functions will satisfy just Hartree's equations. In this way a theo-
retical justification for Hartree's method is obtained. The exclusion
principle of Pauli, however, requires that the wave function repre-
senting a number of electrons shall always be antisymmetrical. One
would therefore expect to get a better approximation if one first
made the product of a number of three-dimensional wave functions
antisymmetrical, by applying permutations and taking a linear
combination, and then made it approach as closely as possible to

* Hartree, Proc. Camb. Phil. Soc, Vol. 24, p. 1H (1927).
t Thomas, Proc. Camb. Phil. Soc, Vol. 23, p. 542 (1926). See also Fermi,

Zeit./Ur Phys., Vol. 48, p. 73 (1928).
X h denotes Planck's constant divided by 2ir.
§ Fock, ZHt. fiir Phys., Vol. 61, p^ 126 (1930).
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the accurate many-dimensional wave function. The three-dimen-
sional wave functions will then, as found by Fock, satisfy equations
somewhat different from Hartree's, containing extra terms which
may be considered as representing the exchange phenomena.

Each three-dimensional wave function will give rise to a cer-
tain electric density. This electric density is really a matrix, like
all dynamical variables in the quantum theory (although one
usually considers only its diagonal elements, as one can insert these
directly into one's picture of the atom). By adding the electric
densities arising from all the wave functions we can obtain the
total electric density for the atom. If we adopt the equations of
the self-consistent field as amended for exchange, then this total
electric density (the matrix) has one important property, namely,
if the value of the total electric density at any time is given, then its
value at any later time is determined by the equations of motion.
This means that the whole state of the atom is completely de-
scribed simply by this electric density; it is not necessary to
specify the individual three-dimensional wave functions that make
up the total electric density. Thus one can deal with any number
of electrons by working with just one matrix density function.

In problems involving a large number of electrons it may be
that the electric density, considered as a function of the coordinates
and momenta, varies appreciably only through regions of phase
space large compared with (2vh)3. One can then make the further
approximation of neglecting the fact that the coordinates and
momenta do not commute, so that the problem reduces to a
classical problem. One still, however, has the condition that the
number of electrons per volume (2-rrh)3 of phase space cannot
exceed two.

We shall examine with this further approximation the electron
distribution in the state of lowest energy of an atom, for which
a certain region of phase space is occupied with the maximum
density of electrons and the remainder is empty. We shall find
that the equation governing the boundary between the occupied
and unoccupied phase space is just that of Thomas' model, with a
small extra term representing the exchange effect. In this way
we obtain a theoretical justification for Thomas' model and also see
what correction must be made in it to allow for exchange.

Equations of the self-consistent field.

When an atom with n electrons is treated by the method of
the self-consistent field, each electron is given its own three-
dimensional wave function. We thus have n three-dimensional
wave functions, (q 11), (q 12),..., (q | n) say, the single variable q being
written to denote the three Cartesian coordinates x,y,z and also
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a spin variable. These wave functions, according to Hartree,
satisfy equations of the form of Schrodinger's equation, thusf

" (q"\r) (1),

where (q'\H (r)\q") is the matrix representing the Hamiltonian
for the rth electron. This Hamiltonian is of the form

H(r) = Ho + -Zs*rBs (2),

where Ho is the Hamiltonian for an electron moving in the field
of the nucleus alone and Bs is the change in this Hamiltonian
caused by the distribution of electric charge corresponding to the
wave function (q | s). We can express Ba in terms of the interaction
energy V between two electrons. This V will be represented by
a matrix of the form (qi'qz | V\qi' q2"), which satisfies

(91VI?l?i'V) = (0«VIv\q*"qi") (3),
on account of the symmetry between the two electrons. We shall
then have

(4),
provided that the wave function (q\s) and its conjugate complex
(s | q) are normalised. If V includes only the Coulomb force between
the electrons, we have

qi')=*M«i'q%').&(qx -qx")s<«i'-9!')
(5),

where f(?i'?a') is the distance between the two points specified by
qx and q2', and equation (4) reduces to

(q' | B,\q") = e*8 (9' - q")j\ («?'" | s ) p/rtfq'") • dq'".

Our wave functions^ | l),(g 12),.. .,(q \ n) should be all orthogonal
to one another. Further, if (q j 1)*, (q \ 2)*,..., {q \ n)* are any set of n
orthogonal independent linear functions of the (q \ 1), (q 12),..., (q | n),
then the (<?|)*'s should describe the distribution of electrons just
as well as the (^p's, and should therefore also satisfy the equations
(1), (2), (4) for the self-consistent field. This, however, is not the
case. We must therefore modify our equations to give them this
invariant property, which may be done in the following way.

t The integral sign is understood to include a summation over both states of
spin.
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We denote the matrix defined in (4) by Bss instead of Bt, and
generalise this definition to

(6).
We then assume the following wave equations:

-2ej(q'\Bsr\q")dq"{q"\s) (7).

I t is evident that equations (6) and (7) will remain invariant under
a transformation to the (q\)*'s, since these equations are of tensor
form with respect to the suffixes r and s (the left and right posi-
tions of a suffix in a symbol corresponding to the covariant and
contra variant positions in relativity theory). Equations (7) are
equivalent to Fock's equations, with the difference that Fock uses
energy parameters instead of the operator ihd/dt and also his equa-
tions do not take the spin variables into account but allow two
electrons to be in the same state instead.

It is easily verified that, with equations (7), if the wave func-
tions are initially all orthogonal they always remain orthogonal.
We have, denoting 2S5,S by B for brevity,

= \{u\q')dq' [tt|(9'|r)] - J [-*|(«|2')] dq'(q'\r)

= jj\u\q')dq' (q'\H0 + B\q")dq"(q" \r)

- 2,jj(u | q') dq' (q' \ B6r \ q") dq" (q" \ s)

-//(«Iq")df (q"\B0 + B\q') dq' (q'|r)

+ Z,jj(s\q")dq"(q"\Br,\q')dq'(q'\r).

The first and third terms here cancel, while the second term be-
comes, with the help of (6),

\u\q')dq'(s\q'")dq'" (q'q'"\V\q" q»)dq*{q»

and the fourth becomes similarly

" (u\ q'") dq'" (q"q"' | V\q'q») dq» (q*\s) dq' (q'\r).
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These two terms also cancel, on account of (3), and hence

j(u\q')dq'(q'\r)

is constant and always vanishes if it vanishes initially. This re-
sult still holds when the atom is perturbed in any way, provided
that the perturbing energy is symmetrical between all the electrons.

The total electron density is, by definition, represented by the
matrix

(q'\p\q") = 2r(q'\r)(r\q") (8).
It has the property that its square is equal to itself, since

(q'\p2\q")=j(q'\pW")dq'"(q'"\p\q")

= Zr8j(q'\r)(r\q'")dq'"(q'"\s)(s\q")

on account of the orthogonality and normalization conditions for
the wave functions. The condition p2 = p is equivalent to the con-
dition that the eigenvalues of p are all 0 or 1.

We shall now obtain the equation of motion for p. We have

ihjt(q'\P\q")

'\H0 + B\q-)dq'"(q'"\r)(r\q")

-X,j(q'\Btr\q"')dq"'(q"'\s)(r\q")

-j(q'\r)(r\q'")dq'"(q'"\H0 + B\q

+ Z,\(q'\r)(s\q"')dq'"{q'"\Brt\q")

-f(q'\pW")dq"'(q'"\H0
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if one substitutes for Ber its value given by (6) and eliminates the
wave functions with the help of (8). This result may be written
symbolically

B-A) (9),

where A is represented by the matrix

(10),

these two expressions being equal on account of (3). A corre-
sponding definition for B is

(q'\B\q")=\\(q'q'"\V\q"qiv)dq'"dq*(q»\p\q'")

(11).

We now have equations (9), (10) and (11) describing the motion
of the distribution of electrons and involving only the one un-
known p. We can therefore deal with the distribution of electrons
by working with just the total electron density p and need not
bother about the individual wave functions (q\ 1), (q\2), ..., (q\n).
The equation of motion for p, namely equation (9), is of the
standard form in quantum mechanics with the Hamiltonian

H=H0 + B-A (12).

This Hamiltonian is unusual in that it is not independent of p,
but contains a part B— A which depends linearly on p.

In the case of a Coulomb law of interaction, for which V is
given by (5), equations (11) and (10) for B and A reduce to

{q'\B\q") = *t(<i - g")f {q>'2'l"'? W I

riq'q") )
B is just the potential produced by the total distribution of charge
and is to be expected in the Hamiltonian H. A is an extra term
representing the exchange effects.

When Ho does not involve the time explicitly, the equation of
motion (9) admits of a simple integral, namely the quantity

VOL. XXVI. PART III. 25
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where D denotes the diagonal sum (or integral) of the matrix
following it. To verify the constancy of this quantity, we observe
that, from (11),

= ^(q"\p\q'){q'\B\q")dq'dq"

= Jjjj (qU\p\ q'")(q"'q' I V\ q"q")(q" \p\q')dq'dq"dq'"dq^

= B(pB),

and similarly D (pA ) = D (pA ).

Hence %-D {p{H0 + \B-

= D{p (Ho + \B- \A)) + \D (pB) - \D (pA)

Thus ih~-tD

= D(HpH)-D(PH*)=0,
since the diagonal sum of a product is not changed by a cyclic
permutation of the factors. Hence D [p (£T0 + \B — %A)] is a con-
stant of the motion. It may be interpreted as the energy integral,
D(pHo) being the proper energy of the electrons (their kinetic
energy plus their potential energy in the field of the nucleus),
\D(pB) being their interaction energy and —^D(pA) being a
correction for exchange effects.

Reduction to a classical density function.

"We shall now examine what the equation of motion (9) becomes
when the electron density p is spread over such a large volume of
phase space that we can neglect the fact that the momenta p do
not commute with the coordinates q and reduce our description of
the atom to a classical one. We shall also now neglect the spin
variables. Each element (q' | a | q") of the matrix representing any
dynamical variable a will now be connected with a certain Fourier
component in the ^-variables of a(qp) considered as a function of
commuting q's and p's. We shall have, in fact,

(q'\a\ q") = (2-rrh)-* ja(qp) e<«-f)vl* dp (14),
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the connection being most accurate when the q on the right-hand
side is taken to be the mean of q' and q". The converse equation
will be

«(3J>) = J (q'\a\q")^^'^d(q'-q") (15).

If we apply equation (15) to the matrix (q'\B\q") defined by
the first of equations (13), we obtain for the corresponding classical
function B (qp) of commuting q's and ^'s,

B (qp) = # J I (q' - q") f^^W» d (q' -q").\ ^ff dq'"

with the help of (14) applied to p. Thus B (qp) is independent of
p, as it must be since the matrix (q' \B\q") is diagonal, and it is
just that function of q which corresponds to the potential arising
from a distribution of electrons of density p (qp) per volume (2irh)3

of phase space.
If we now apply (15) to the matrix (q'\ A \ q") defined by the

second of equations (13), we obtain

A {qp) I W F ?
P-Hq'-q'')(p-p')lh

r(q'q") *«-*">•

with the help of (14) applied to p. The second integral here can
be evaluated. The q' — q and p—p' appearing in the exponential
are really vectors and their product should be understood to mean
their scalar product. If we denote by 6 the angle between these
two vectors and by a the magnitude of q' — q", which is the same
as r(q'q"), we have for this second integral
f e-Utf-q")(p-p')lh fx ,-1

-7-77T— d (q' - q") = adai f-*lp-*'lo"86/* 2wd (cos 6)
J r\<l 1 ) Jo J - l

4nrhda sin {a\p—p'\/h}/\p—=
Jo

Hence A (qp) = ~ \ , ^ 4 4 dp1 (17).

25-2
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These expressions for B (q) and A (qp) substituted in (12) will
give us a classical Hamiltonian governing the motion of the
distribution of electrons. To proceed with the solution we shall
now make an assumption concerning the form of p, which seems to
be plausible when we are dealing with the state of lowest energy
of the atom, namely the assumption that for each value of q the
phase space is saturated, with two electrons per volume (2rrh)3, in
a region for "which the magnitude of the momentum p is less than
a certain value P, and is empty outside this region. In symbols

P(qp) = 2 \p\<P
= 0 \p\>P,

where P is a certain function of q. This assumption gives us at
once from (16)

r{qq'-) •-

and from (17), after a straightforward integration,

7--M + «"J -<«)•
For a stationary state of the atom p must be constant, so that the

Poisson bracket of p with H must vanish. With p of the form which
we have assumed, this condition becomes that H must be constant
along the boundary between the saturated and unoccupied phase
space, i.e. H(qP) must be constant. Now

H (qP) = Ho (qP) + B(q)- 2*/wh. P.
The constancy of this gives us a condition for the unknown
function P.

For an atom with atomic number Z, we shall have

where r denotes distance from the nucleus. We may assume
spherical symmetry, so that P is a function of r only. We now get
for the value of H on the boundary

By equating to zero the differential coefficient of this with respect
to r, we get

dr \2m vh ) Swk2 r2j v
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Multiplication by r2 and a further differentiation then give

dr X dr \2m irh

This is a differential equation which determines P, the maxi-
mum momentum for an electron, as a function of r. It differs from
the corresponding equation in Thomas' theory only on account of
its having a term linear in P on the left-hand side, which term
may be considered to represent the exchange effects. This term
will not be very important in the interior of a heavy atom, since
the ratio of its coefficient to that of the P2 term is 4eawi/7rA, which
is 4/TT times the momentum of an electron in the first Bohr orbit
in the hydrogen atom. For a sufficiently large value of r, however,
the extra term causes P to become negative, and then to oscillate
with decreasing amplitude and increasing period as r -*• oo. A
negative value for P has, of course, no physical meaning. The fact
that our theory gives this meaningless result for the outside of the
atom is hardly surprising, since the approximation we made of
regarding p as a function of commuting <?'s and ĵ's is certainly not
valid for this region. We may expect equation (20) to be more
accurate than Thomas' equation in the interior of the atom, in
spite of the fact that it is inapplicable outside.

https://doi.org/10.1017/S0305004100016108 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100016108

