Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T15:16:59.182Z Has data issue: false hasContentIssue false

Phase transitions and fluidity characteristics of lipids and cell membranes

Published online by Cambridge University Press:  17 March 2009

D. Chapman
Affiliation:
Chemistry Department, Sheffield University, Sheffield S3 7HF

Extract

The concept that the liquid crystalline or mesomorphic condition was of importance to biological systems is a relatively old idea. Thus Bernal (1933) when discussing the different types of arrangements of molecules in liquid crystals commented ‘Such structures belong to the liquid crystal as a unit and not to its molecules which may be replaced by others without destroying them and they persist in spite of the complete fluidity of the substance. These are just the properties to be required for a degree of organization between that of the continuous substance, liquid or crystalline solid and even the simplest living cell.’ Stewart (1961) some thirty years later also stated that ‘It is this property – the combination of flow and lability with a preferred and relatively stable molecular orientation – that makes the mesomorphic (i.e. liquid crystal) phase uniquely appropriate to the structure of protoplasm and living tissue.’

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VI. References

Barker, R. W., Bell, J. D., Radda, G. K. & Richards, R. E. (1972). Phosphorus nuclear magnetic resonance in phospholipid dispersions. Biochim. biophys. Acta 260, 161–3.CrossRefGoogle ScholarPubMed
Barratt, M. D., Green, D. K. & Chapman, D. (1969). E.s.r. studies of nitroxide probes in lecithin-water systems. Chem. Phys. Lipids 3, 140–4.CrossRefGoogle ScholarPubMed
Barton, P. G. (1968). The influence of surface charge density of phosphatides on the binding of some cations. J. biol. Chem. 243, 3884–90.CrossRefGoogle ScholarPubMed
Bear, R. S., Palmer, K. J. & Schmitt, F. O. (1941). X-ray diffraction studies of nerve lipids. J. cell. comp. Physiol. 17, 355–67.CrossRefGoogle Scholar
Bernal, J. D. (1933). General discusion. Trans. Faraday Soc. 29, 1082.Google Scholar
Bertoli, E., Chapman, D. & Strach, S. J. (1975). Biomembrane phase transitions. Studies of Saccharomyces cerevisiae. (In the Press.)Google Scholar
Bittman, R. & Blau, L. (1972). The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry, N.Y. 11, 4831–9.CrossRefGoogle ScholarPubMed
Blatt, F. J. (1974). Temperature dependence of the action potential in Nitella flexilis. Biochim. biophys. Acta 339, 382–9.CrossRefGoogle ScholarPubMed
Blaustein, M. P. (1967). Phospholipids as ion exchangers: Implications for a possible role in biological membrane excitability and anesthesia. Biochim. biophys. Acta 135, 653–68.CrossRefGoogle ScholarPubMed
Blazyk, J. F. & Steim, J. M. (1972). Phase transitions in mammalian membranes. Biochim. biophys. Acta 266, 737–41.CrossRefGoogle ScholarPubMed
Butler, K. W., Tattrie, N. H. & Smith, I. C. P. (1974). The location of spin probes in two phase mixed lipid systems. Biochim. biophys. Acta 363, 351–60.CrossRefGoogle ScholarPubMed
Byrne, P. & Chapman, D. (1964). Liquid crystalline nature of phospholipids. Nature, Lond. 202, 987–8.CrossRefGoogle Scholar
Cater, B. A., Chapman, D., Hawes, S. & Saville, J. (1974). Lipid phase transitions and drug interactions. Biochim. biophys. Acta 363, 5469.CrossRefGoogle ScholarPubMed
Chapman, D. (1958). An infrared spectroscopic examination of some anhydrous sodium soaps. J. chem. Soc. 152, 784–9.CrossRefGoogle Scholar
Chapman, D. (1962). The polymorphism of glycerides. Chem. Rev. (5), 433–56.CrossRefGoogle Scholar
Chapman, D. (1966). Liquid crystals and cell membranes. Ann. N.Y. Acad. Sci. 137, 745–54.CrossRefGoogle ScholarPubMed
Chapman, D. (1971). Liquid crystalline properties of phospholipids and biological membranes. Symp. Faraday Soc. (5), 163–74.CrossRefGoogle Scholar
Chapman, D. (1972). Nmr spectroscopic studies of biological membranes. Ann. N.Y. Acad. Sci. 195, 179206.CrossRefGoogle Scholar
Chapman, D., Byrne, P. & Shipley, G. G. (1966). The physical properties of phospholipids. I. Solid state and mesomorphic properties of some 2,3-diacyl-DL-phosphatidylethanolamines. Proc. R. Soc. A 290, 115–42.Google Scholar
Chapman, D. & Chen, S. (1972). Thermal and spectroscopic studies of lipids and membranes. Chem. Phys. Lipids 8, 318–26.CrossRefGoogle ScholarPubMed
Chapman, D. & Collin, D. T. (1965). Differential thermal analysis of phospholipids. Nature, Lond. 206, 189.CrossRefGoogle ScholarPubMed
Chapman, D. & Penkett, S. A. (1966). Nmr spectroscopic studies of the interaction of phospholipids with cholesterol. Nature, Lond. 211, 1304–5.CrossRefGoogle Scholar
Chapman, D. & Salsbury, N. J. (1966). Physical studies of phospholipids. V. Proton magnetic resonance studies of molecular motion in some 2,3-diacyl-DL-phosphatidylethanolamines. Trans. Faraday Soc. 62, 2607–21.CrossRefGoogle Scholar
Chapman, D. & Urbina, J. (1971). Phase transition and bilayer structure of Mycoplasma laidlawii B. FEBS Lett. 12(3), 169–72.CrossRefGoogle Scholar
Chapman, D., Urbina, J. & Keough, K. M. (1974). Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J. biol. Chem. 249, 2512–21.CrossRefGoogle ScholarPubMed
Chapman, D., Williams, R. M. & Ladbrooke, B. D. (1967). Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacylphosphatidylcholines (lecithins). Chem. Phys. Lipids 1, 445–75.CrossRefGoogle Scholar
Charvolin, J., Manneville, P. & Deloche, B. (1973). Magnetic resonance of perdeuterated potassium laurate in oriented soap-water multilayers. Chem. Phys. Letters 23, 345–8.CrossRefGoogle Scholar
Clowes, A., Cherry, R. J. & Chapman, D. (1971). Physical properties of lecithin-cerebroside films. Biochim. biophys. Acta 249, 301–7.CrossRefGoogle Scholar
Cogan, U., Shinitzky, M., Weber, G. & Hishida, T. (1073). Microviscosity and order in the hydrocarbon region of phospholipid and phospholipidcholesterol dispersions determined with fluorescent probes. Biochemistry, N.Y. 12, 521–7.CrossRefGoogle Scholar
Darke, A., Finer, E. G., Flook, A. G. & Phillips, M. C. (1972). Nuclear magnetic resonance study of lecithin-cholesterol interactions. J. molec. Biol. 63, 265–78.CrossRefGoogle ScholarPubMed
de, Gier J., Mandersloot, J. G. & van, Deenen L. L. M. (1968). Lipid composition and permeability of liposomes. Biochim. biophys. Acta 150, 666–75.Google Scholar
Dervichian, D. G. (1964). The physical chemistry of phospholipids. In Progress in Biophysics and Molecular Biology 14, 263342. New York: Pergamon Press.Google Scholar
Devaux, P., Scandella, C. J. & McConnell, H. M. (1973). Spin-spin interactions between spin labelled phospholipids incorporated into membranes. J. Am. chem. Soc. 95, 474–85.Google Scholar
Ehrstrom, M., Eriksonn, L. E. G., Israelachvili, J. & Ehrenberg, A. (1973). The effects of some cations and anions on spin-labelled cytoplasmic membranes of Bacillus subtilis. Biochem. biophys. Res. Commun. 55, 396402.CrossRefGoogle Scholar
Engelman, D. M. (1971). Lipid bilayer structure in the membrane of Mycoplasma laidlawii. J. molec. Biol. 58, 153–65.CrossRefGoogle ScholarPubMed
Engleman, D. M. & Rothman, J. E. (1972). The planar organization of lecithin-cholesterol bilayers. Proc. natn. Acad. Sci. U.S.A. 247, 3694–5.Google Scholar
Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T. & Wakil, S. J. (1971). The molecular organization of lipids in the membrane of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 68, 3180–4.CrossRefGoogle ScholarPubMed
Finer, E. G. & Darke, A. (1974). Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem. Phys. Lipids 12, 116.CrossRefGoogle Scholar
Finean, J. B. (1953). X-ray diffraction study on the polymorphism of phospholipids. Biochim. biophys. Acta 10, 371–84.CrossRefGoogle Scholar
Finean, J. B. & Millington, P. F. (1955). Low angle X-ray diffraction study of the polymorphic forms of synthetic α:β and α:ά kephalins and α:lecithins. Trans. Faraday Soc. 51, 1008–15.CrossRefGoogle Scholar
Finklestein, A. & Cass, A. (1967). Effect of cholesterol on the water permeability of thin lipid membranes. Nature, Lond. 216, 717–18.CrossRefGoogle Scholar
Fox, F. C. & Tsukagoshi, T. (1972). The influence of lipid phase transitions on membrane function and assembly. In Membrane Research, p. 145. New York: Academic Press.Google Scholar
Godin, D. V. & Ng, T. W. (1974). Studies on the membrane-perturbational effects of drugs and divalent cations utilising trinitro benzene s sulfonic acid. Mol. Pharmacol. 9, 802–19.Google Scholar
Gottlieb, M. H. & Eanes, E. D. (1972). Influence of electrolytes on the thickness of the phospholipid bilayers of lamellar smectic mesophases. Biophys. J. 12, 1533–48.CrossRefGoogle Scholar
Grant, C. W. M. & McConnell, H. M. (1973). Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc. natn. Acad. Sci. U.S.A. 70, 1238–40.CrossRefGoogle ScholarPubMed
Gulik-Krzywicki, T., Schecter, E., Luzzati, V. & Faure, M. (1969). Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases. Nature, Lond. 223, 1116–21.CrossRefGoogle ScholarPubMed
Haest, C. W. M., Verkleij, A. J., de, Gier J., Scheek, R., Ververgaert, P. H. J. & Van Deenen, L. L. M. (1974). The effect of lipid phase transitions on the architecture of bacterial membranes. Biochim. biophys. Acta 356, 1726.CrossRefGoogle ScholarPubMed
Harkins, W. D. & Anderson, T. F. (1937). A simple accurate film balance of the vertical type for biological and chemical work and a theoretical and experimental comparison with the horizontal type. II. Tight packing of a monolayer by ions. J. Am. chem. Soc. 59, 2189–97.CrossRefGoogle Scholar
Hill, M. W. (1974). The effect of anesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyl lecithin. I. The normal alcohol up to c = 9 and three inhalation anesthetics. Biochim. biophys. Acta 356, 117124.CrossRefGoogle Scholar
Hinz, H. J. & Sturtevant, J. M. (1972). Calorimetric investigation of the influence of cholesterol on the transition properties of bilayers formed from synthetic L-α-lecithins in aqueous suspension. J. biol. Chem. 247, 3697–701.CrossRefGoogle Scholar
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. Biochim. biophys. Acta 274, 294312.CrossRefGoogle ScholarPubMed
Horwitz, A. F., Horstey, W. J. & Klein, M. P. (1972). Magnetic resonance studies on membrane and model membrane systems: Proton magnetic relaxation rates in sonicated lecithin dispersions. Proc. natn. Acad. Sci. U.S.A. 69, 590–3.CrossRefGoogle ScholarPubMed
Hsu, M. & Chen, S. I. (1973). Nuclear magnetic resonance studies of the interaction of valinomycin with unsonicated lecithin bilayers. Biochemistry, N.Y. 12, 3872–6.CrossRefGoogle ScholarPubMed
Hubbell, W. L. & McConnell, H. M. (1971). Molecular motion in spin-labelled phospholipids and membranes. J. Am. chem. Soc. 93, 314–26.Google Scholar
Inoue, K. (1974). Permeability properties of liposomes prepared from dipalmitoyl lecithin, dimyristoyl lecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin. Biochim. biophys. Acta 339, 390402.CrossRefGoogle Scholar
Ito, T. & Ohnishi, S. (1974). Ca2+ induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes. Biochim. biophys. Acta 352, 2937.CrossRefGoogle ScholarPubMed
Johnson, S. M. & Miller, K. W. (1970). Antagonism of pressure and anaesthesia. Nature, Lond. 228, 75–6.CrossRefGoogle ScholarPubMed
Kleeman, W. & McConnell, H. M. (1974). Lateral phase separations in Escherichia coli membranes. Biochim. biophys. Acta 345, 220–30.CrossRefGoogle Scholar
Kornberg, R. D. & McConnell, H. M. (1971). Lateral diffusion of phospholipids in a vesicle membrane. Proc. natn. Acad. Sci. U.S.A. 68, 2564–8.CrossRefGoogle Scholar
Krasne, S., Eisenman, G. & Szabo, G. (1971). Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science, N.Y. 174, 412–15.CrossRefGoogle ScholarPubMed
Ladbrooke, B. D. & Chapman, D. (1969). Thermal analysis of lipids, proteins and biological membranes. Chem. Phys. Lipids 3, 304–67.CrossRefGoogle ScholarPubMed
Ladbrooke, B. D., Jenkinson, T. J., Kamat, V. B. & Chapman, D. (1968 a). Physical studies of myelin. I. Thermal analysis. Biochim. biophys. Acta 164, 101–9.CrossRefGoogle ScholarPubMed
Ladbrooke, B. D., Williams, R. M. & Chapman, D. (1968 b). Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. biophys. Acta 150, 333–40.CrossRefGoogle ScholarPubMed
Lawrence, A. S. C. (1938). The metal soaps and the gelation of their paraffin solutions. Trans. Faraday Soc. 34, 660–77.CrossRefGoogle Scholar
Levine, Y. K. (1973). X-ray diffraction studies of membranes. Progr. Surface Sci. 3, 279352.CrossRefGoogle Scholar
Levine, Y. K., Birdsall, N. J. M., Lee, A. G. & Metcalfe, J. C. (1972). 13C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labelled lipids. Biochemistry, N.Y. 11, 1416–21.CrossRefGoogle Scholar
Levine, Y. K. & Wilkins, M. H. F. (1971). Structure of oriented lipid bilayers. Nature New Biol. 230, 6972.CrossRefGoogle ScholarPubMed
Linden, C. D., Keith, A. D. & Fox, C. F. (1973). Correlations between fatty acid distribution in phospholipids and the temperature dependence of membrane physical state. J. Supramol. Struct. 1, 523–34.CrossRefGoogle ScholarPubMed
Lippert, J. L. & Peticolas, W. L. (1971). Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lechithin multilayers. Proc. natn. Acad. Sci. U.S.A. 68, 1572–6.CrossRefGoogle Scholar
Lippert, J. L. & Peticolas, W. L. (1972). Raman active vibrations in long chain fatty acids and phospholipid sonicates. Biochim. biophys. Acta 282, 817.CrossRefGoogle ScholarPubMed
Luzzati, V. (1968). X-ray diffraction studies of lipid-water systems in biological membranes. In Biologicat Membranes (ed. Chapman, D.), p. 71. New York: Academic Press.Google Scholar
Luzzati, V. & Husson, F. (1962). The structure of the liquid crystalline phases of lipid-water systems. J. Cell. Biol. 12, 207–19.CrossRefGoogle ScholarPubMed
Luzzati, P. V., Mustacchi, H., Skoulios, A. & Husson, F. (1960). La structure des colloides d'association. I. Les phases liquide-crystallines des systèmes amphiphile-eau. Acta crystaltogr. 13, 660–7.CrossRefGoogle Scholar
Lyons, J. M. & Raison, J. K. (1970). A temperature-induced transition in mitochondrial oxidation contrasts between cold and warm-blooded animals. Comp. Biochem. Physiol. 37, 405–11.CrossRefGoogle Scholar
Marcelja, S. (1974). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 165–76.CrossRefGoogle ScholarPubMed
Nagle, J. F. (1973). Theory of biomembrane phase transitions. J. chem. Phys. 58, 252–64.CrossRefGoogle Scholar
Naqvi, K. R., Behr, J. P. & Chapman, D. (1974). Methods for probing lateral diffusion of membrane components. Triplet-triplet annihilation and triplet-triplet energy transfer. Chem. Phys. Letters 26, 440–44.CrossRefGoogle Scholar
Nicholls, P. & Miller, N. (1974). Chloride diffusion from liposomes. Biochim. biophys. Acta 356, 184–98.CrossRefGoogle ScholarPubMed
Nordsieck, H., Rosevear, F. B. & Ferguson, R. H. (1948). X-ray study of the stepwise melting of anhydrous sodium palmitate. J. chem. Phys. 16, 175–80.CrossRefGoogle Scholar
Ohki, S. (1969). The electrical capacitance of phospholipid membranes. Biophys. J. 9, 1195–205.CrossRefGoogle ScholarPubMed
Oldfield, E. & Chapman, D. (1972). Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett. 23(3), 285–97.CrossRefGoogle ScholarPubMed
Oldfield, E., Chapman, D. & Derbyshire, W. (1971). Deuteron resonance; a novel approach to the study of hydrocarbon chain mobility in membrane systems. FEBS Lett. 16(3), 102–4.CrossRefGoogle Scholar
Oldfield, E., Chapman, D. & Derbyshire, W. (1972 a). Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance. Chem. Phys. Lipids 9, 6981.CrossRefGoogle ScholarPubMed
Oldfield, E., Keough, K. M. & Chapman, D. (1972 b). The study of hydrocarbon chain mobility in membrane systems using spin-label probes. FEBS Lett. 20(3), 344–6.CrossRefGoogle Scholar
Overath, P., Schairer, H. U. & Stoffel, W. (1970). Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 67, 606–12.CrossRefGoogle ScholarPubMed
Overath, P. & Ttauble, H. (1973). Phase transitions in cells, membranes and lipids of Escherichia coli. Detection by fluorescent probes, light scattering and dilatometry. Biochemistry, N.Y. 12, 2625–34.CrossRefGoogle ScholarPubMed
Pache, W. & Chapman, D. (1972). Interaction of antibiotics with membranes. Chlorothricin. Biochim. biophys. Acta 255, 348–57.CrossRefGoogle ScholarPubMed
Pache, W., Chapman, D. & Hillaby, R. (1972). Interaction of antibiotics with membranes. Polymixin B and gramicidin S. Biochim. biophys. Acta 255, 358–64.CrossRefGoogle Scholar
Pagano, R. E., Cherry, R. J. & Chapman, D. (1973). Phase transitions and heterogeneity in lipid bilayers. Science, N.Y. 181, 557–9.CrossRefGoogle ScholarPubMed
Plamer, K. J. & Schmitt, F. O. (1941). X-ray diffraction studies of lipid emulsions. J. cell. comp. Physiol. 17, 385–94.CrossRefGoogle Scholar
Papathdjopoluos, D. (1968) Surface properties of acidic phospholipids: Interactions of monolayers and hydrated liquid crystals with uni- and bivalent metal ions. Biochim. biophys. Acta 163, 240–54.CrossRefGoogle Scholar
Papahadjopoulos, D., Jacobson, K., Nir, S. & Isac, T. (1973). Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. biophys. Acta 311, 330–48.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D., Poste, G., Schaeffer, B. E. & Vail, W. J. (1974). Membrane fusion and molecular segregation in phospholipid vesicles. Biochim. biophys. Acta 352, 1028.CrossRefGoogle ScholarPubMed
phillips, M. C. & Chapman, D. (1968). Monolayer characteristics of saturated 1,2-diacylphosphatidylcholine (lecithins) and phosphatidylethanolamines at the air–water interface. Biochim. biophys. Acta 163, 301–13.CrossRefGoogle Scholar
Phillips, M. C. & Finer, E. G. (1974). The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim. biophys. Acta 356, 199206.CrossRefGoogle ScholarPubMed
Phillips, M. C., Ladbrooke, B. D. & Chapman, D. (1970). Molecular interactions in mixed lecithin systems. Biochim. biophys. Acta 93, 3544.CrossRefGoogle Scholar
Phillips, M. C., Williams, R. M. & Chapman, D. (1969). On the nature of hydrocarbon chain motions in lipid liquid crystals. Chem. Phys. Lipids 3, 234–44.CrossRefGoogle Scholar
Pierce, W. C. (1935) Scattering of X-rays by polyatomic liquids, n–heptane. J. chem. Phys. 3, 252–5.CrossRefGoogle Scholar
Raison, J. K., Lyons, J. M. & Thomson, W. W. (1971). The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria. Archs. Biochem. Biophys. 142, 8390.CrossRefGoogle ScholarPubMed
Rand, P., Chapman, D. & Larrson, K. (1974). Unpublished studies.Google Scholar
Rand, P. & Luzzati, V. (1968). X-ray diffraction study in water of lipids extracted from human erythrocytes. Biophys. J. 8, 125–37.CrossRefGoogle ScholarPubMed
Reiss-Husson, F. (1967). Structure des phases liquide-crystallines de différents phospholipides, monoglycérides, sphingolipides anhydres ou en présence d'eau. J. molec. Biol. 25, 363–82.CrossRefGoogle Scholar
Rojas, E. & Tobias, J. M. (1965). Membrane model: Association of inorganic cations with phospholipid monolayers. Biochim. biophys. Acta 94 394404.CrossRefGoogle ScholarPubMed
Rothman, J. (1973). The molecular basis of mesomorphic phase transitions in phospholipid systems. J. theor. Biol. 38, 116.CrossRefGoogle ScholarPubMed
Rothman, J. E. & Engelman, D. M. (1972). Molecular mechanism for the interaction of phospholipid with cholesterol. Nature New Biol. 237, 42–4.CrossRefGoogle ScholarPubMed
Sackmann, E. & Trauble, H. (1972). Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J. Am. chem. Soc. 94, 4482–97.CrossRefGoogle ScholarPubMed
Salsbury, N. J. & Chapman, D. (1968). Physical studies of phospholipids. VIII. Nuclear magnetic resonance studies of diacyl-L-phosphatidylcholines (lecithins). Biochim. biophys. Acta 163, 314–24.CrossRefGoogle Scholar
Salsbury, N. J., Darke, A. & Chapman, D. (1972). Deuteron magnetic resonance studies of water associated with phospholipids. Chem. Phys. Lipids 8, 142–51.CrossRefGoogle ScholarPubMed
Schmitt, F. O., Bear, R. S. & Clark, G. L. (1935). X-ray diffraction studies on nerve membrane. Radiology 25, 131–51.CrossRefGoogle Scholar
Schreier-Muccillo, S., Marsh, D., Dugas, H., Schneider, H. & Smith, I. C. P. (1973). A spin probe study of the influence of cholesterol on the motion and orientation of phospholipids in oriented multi-bilayers and vesicles. Chem. Phys. Lipids 10, 1117.CrossRefGoogle Scholar
Seelig, J. (1970). Spin-lable studies of oriented smectic liquid crystals. (A model system for bilayer membranes.) J. Am. chem. Soc. 92, 3881–7.CrossRefGoogle Scholar
Seelig, J. (1971). On the flexibility of hydrocarbon chains in lipid bilayers. J. Am. chem. Soc. 93, 5017–22.CrossRefGoogle ScholarPubMed
Seelig, J. & Niederberger, W. (1974). Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. A deuterium magnetic resonance study. J. Am. chem. Soc. 96, 2069–72.CrossRefGoogle Scholar
Seelig, J. & Seelig, A. (1974). Deuterium magnetic resonance studies of phospholipid bilayers. Biochem. biophys. Res. Commun. 57, 406–7.CrossRefGoogle ScholarPubMed
Shanes, A. M. & Gershfeld, N. L. (1960). Interactions of veratrum alkaloids, procaine and calcium with monolayers of stearic acid and their implications for pharmacological action. J. gen. Physiol. 44, 345–63.CrossRefGoogle ScholarPubMed
Sheetz, M. P. & Chan, S. I. (1972). Effect of sonication on the structure of lecithin bilayers. Biochemistry, N.Y. 11, 4576–81,CrossRefGoogle ScholarPubMed
Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shlrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I. & Ryadova, I. D. (1960). Cyclodepsipeptides as chemical tools for studying ionic transport through membranes. J. Membrane Biol. 1, 402–30.CrossRefGoogle Scholar
shimshick, E. J. & McConnell, H. M. (1973 a). Lateral phase separation in phospholipid membranes. Biochemistry, N.Y. 12, 2351–60.CrossRefGoogle ScholarPubMed
Shimshick, E. J. & McConnell, H. M. (1973 b). Lateral phase separation in binary mixtures of cholesterol and phospholipids. Biochem. biophys. Res. Commun. 53, 446–8.CrossRefGoogle Scholar
Shipley, G. G. (1973). Recent X-ray diffraction studies of biological membranes and membrane components. In Biological Membranes (ed. Chapman, D. & Wallach, D. F. H.), pp. 185. New York: Academic Press.Google Scholar
Small, D. M. (1967). Phase equilibrium and structure of dry and hydrated egg lecithin. J. Lipid Res. 8, 551–7.CrossRefGoogle Scholar
Speth, V. & Wunderlich, F. (1973). A direct visualization of reversible transitions in biomembrane structure induced by temperature. Biochim. biophys. Acta 291, 621–8.CrossRefGoogle ScholarPubMed
Steim, J., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. D. & Rader, R. L. (1969). Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc. natn. Acad. Sci. U.S.A. 63, 104–9.CrossRefGoogle Scholar
Stewart, G. T. (1961). Mesomorphic forms of liquid in the structure of normal atheromatous tissues. J. Path. Bact. 81, 385–92.CrossRefGoogle Scholar
Stier, A. & Sackmann, E. (1973). Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim. biophys. Acta 311, 400–8.CrossRefGoogle ScholarPubMed
Tardieu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. molec. Biol. 75, 711–33.CrossRefGoogle ScholarPubMed
Trauble, H. (1972). Phasenumwandlungen in lipidenmögliche Schaltprozesse in biologischen Membranen. Naturwissenschaften 58, 277–84.CrossRefGoogle Scholar
Trauble, H. (1972). Phase transitions in lipids. In Biomembranes, vol. 3 (ed. Kreutzer, F. & Slegers, J. F. G.), pp. 197227. New York: Plenum Press.Google Scholar
Trauble, H. & Eibl, H. (1974). Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment. Proc. natn. Acad. Sci. U.S.A. 71, 214–19.CrossRefGoogle ScholarPubMed
Trauble, H. & Haynes, D. H. (1971). The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition. Chem. Phys. Lipids 7, 324–35.CrossRefGoogle Scholar
Trauble, H. & Sackmann, E. (1972). Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition. J. Am. chem. Soc. 94, 4499–510.CrossRefGoogle Scholar
Trudell, J. R., Hubbell, W. L. & Cohen, E. N. (1973). The effect of two inhalation anaesthetics on the order of spin-labelled phospholipids. Biochim. biophys. Acta 291, 321–7.CrossRefGoogle Scholar
Urry, D. W. (1971). The gramicidin A transmembrane channel: A proposed π(L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672–6.CrossRefGoogle Scholar
Vandenheuvel, F. A. (1963). Study of biological structure at the molecular level with stereo model projections. I. The lipids in the myelin sheath of nerve. J. Am. Oil chem. Soc. 40, 455–71.CrossRefGoogle Scholar
Vanderkooi, J. M. & Chance, B. (1972). Temperature sensitivity of fluorescence probes in the presence of model membranes of mitochondria. FEBS Lett. 22, 23–6.CrossRefGoogle Scholar
Veksli, Z., Salsury, N. J. & Chapman, D. (1969). Physical studies of phospholipids. XII. Nuclear magnetic resonance studies of molecular motion in some pure lecithin-water systems. Biochim. biophys. Acta 183, 434–46.CrossRefGoogle ScholarPubMed
Verkleij, A. J., de, Kruyff B., Ververgaert, P. H. J. TH., Tocanne, J. F. & van, Deenen L. L. M. (1974). The influence of pH, Ca2+ and protein on the thermotropic behaviour of negatively charged phosphatidylglycerol. Biochim. biophys. Acta 339, 432–7.CrossRefGoogle Scholar
Verkleij, A. J., Ververgaert, P. H. J. TH., van, Deenen L. L. M. & Elbers, P. F. (1972). Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze-fracturing microscopy. Biochim. biophys. Acta 288, 326–32.CrossRefGoogle ScholarPubMed
Vold, M. J. (1941). Liquid crystalline, waxy and crystalline phases in binary mixtures of pure anhydrous soaps. J. Am. chem. Soc. 63, 160–8.CrossRefGoogle Scholar
Vold, M., Macomber, M. & Vold, R. D. (1941). Stable phases occurring between true crystal and true liquid for single pure anhydrous soaps. J. Am. chem. Soc. 63, 168–75.CrossRefGoogle Scholar
Warren, B. E. (1933). X-ray diffraction in long chain liquids. Phys. Rev. 44, 969–73.CrossRefGoogle Scholar
Whittington, S. G. & Chapman, D. (1965). Monte Carlo study of rotational premolting in crystals of long chain paraffins. Trans. Faraday Soc. 61, 2656–60.CrossRefGoogle Scholar
Whittington, S. G. & Chapman, D. (1966). The effect of density on the configurational properties of long-chain molecules using a Monte Carlo method. Trans. Faraday Soc. 62, 3319–24.CrossRefGoogle Scholar
Wilkins, M. H. F., Blaurock, A. E. & Engelman, D. M. (1971). Bilayer structure in membranes. Nature, Lond. 230, 72–6.Google ScholarPubMed
Williams, R. M. & Chapman, D. (1970). Phospholipids, liquid crystals and cell membranes. In Progress in the Chemistry of Fats and Other Lipids (ed. Holman, R. T.), pp. 179. New York: Pergamon Press.Google Scholar
Zachariasen, W. H.. The liquid ‘structure’of methyl alcohol (1935). J. chem. Phys. 3, 158–61.CrossRefGoogle Scholar