Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-13T17:09:54.827Z Has data issue: false hasContentIssue false

A molecular phylogeny of the benign Theileria parasites based on major piroplasm surface protein (MPSP) gene sequences

Published online by Cambridge University Press:  23 November 2009

W. JEONG
Affiliation:
Division of Veterinary Biotechnology, National Veterinary Research and Quarantine Service, 480, Anyang 6-dong, Anyang, Gyeonggido, 430-824South Korea
S. H. YOON
Affiliation:
Division of Veterinary Biotechnology, National Veterinary Research and Quarantine Service, 480, Anyang 6-dong, Anyang, Gyeonggido, 430-824South Korea
D. J. AN
Affiliation:
Division of Veterinary Biotechnology, National Veterinary Research and Quarantine Service, 480, Anyang 6-dong, Anyang, Gyeonggido, 430-824South Korea
S.-H. CHO
Affiliation:
Division of Malaria and Parasitic Disease, National Institute of Health, Tong-Il Lo 194, Ennpyeong-Gu, 122-701, Seoul, South Korea
K.-K. LEE
Affiliation:
Department of Veterinary Internal Medicine, Cheju University, Ara 1-dong, Jeju-si, Jeju-do, 690-756, South Korea
J.-Y. KIM*
Affiliation:
Division of Malaria and Parasitic Disease, National Institute of Health, Tong-Il Lo 194, Ennpyeong-Gu, 122-701, Seoul, South Korea
*
*Corresponding author: Division of Malaria and Parasitic Disease, National Institute of Health, Tong-Il Lo 194, Ennpyeong-Gu, 122-701, Seoul, Korea. Tel: +8223802183. Fax: +8223801560. E-mail: jykim-malaria@nih.go.kr

Summary

To investigate the phylogeny of benign Theileria parasites, we determined the complete major piroplasm surface protein (MPSP) gene sequences for 6 benign theilerial organisms, including the first from tick. Sequences were analysed alongside published sequences for 39 benign Theileria parasites, using Bayesian inference and maximum parsimony. All MPSP sequences were 852 nucleotides, except for Gansu, Wuchangbuf, VB01, and VB01; Gansu contained 873 nucleotides, and the other 3 had 855. Deduced amino acid sequences contained 284 residues, except for Gansu (291) and Wuchangbuf, VB01, and VB01 (285 each). Pairwise comparisons showed identities among 45 theilerial MPSP sequences ranging from 70·9 to 99·8% for nucleotide and 71·0 to 100% for amino acid sequences. Our results clearly indicate that all global parasites, excluding Brisbane, were classified into 1 of 8 types; 6 types of Theileria exist in Korea. Each type, excluding Type 6, has several type-specific amino acid sequences. The phylogenetic tree derived from the nucleotide sequences showed 2 sister-group relationships, Type 2+Type 7 and Type 3+Brisbane, with a new branching pattern: (Type 6 (Type 8 ((Type 2, Type 7), (Type 1, (Type 4, (Type 5, (Type 3, Brisbane))))))). Our sequence data showed no geographical influence on worldwide Theileria parasite distribution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bai, Q., Liu, G. and Hen, G. (1997). An unidentified species of Theileria infective for cattle discovered in China. Tropical Animal Health and Production 29, 43S47S.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985) Confidence limits on the phylogenetics: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Fujisaki, K., Kawazu, S. and Kamio, T. (1994). The taxonomy of the bovine Theileria spp. Parasitology Today 10, 3133.CrossRefGoogle ScholarPubMed
Gubbels, M. J., Hong, Y., van der Weide, M., Qi, B., Nijman, I. J., Guangyuan, L. and Jongejan, F. (2000). Molecular characterisation of the Theileria buffeli/orientalis roup. International Journal for Parasitology 30, 943952.CrossRefGoogle Scholar
Hall, T. A. (1999). BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Huelsenbeck, J. P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Irvin, A. D. (1987). Characterization of species and strains of Theileria. Advances in Parasitology 26, 145197.CrossRefGoogle ScholarPubMed
Jeong, W., Kweon, C. H., Kang, S. W. and Paik, S. G. (2003). Diagnosis and quantification of Theileira sergenti using TaqMan PCR. Veterinary Parasitology 111, 287295.CrossRefGoogle Scholar
Jeong, W., Kweon, C. H., Kim, J. M., Jang, H. and Paik, S. G. (2005). Serological investigation of Theileria sergenti using latex agglutination test in South Korea. Journal of Parasitology 9, 164169.CrossRefGoogle Scholar
Kakuda, T., Shiki, M., Kubota, S., Sugimoto, C., Brown, W. C, Kosum, C., Nopporn, S. and Onuma, M. (1998). Phylogeny of benign Theileria species from cattle in Thailand, China and the U.S.A. based on the major piroplasm surface protein and small subunit ribosomal RNA genes. International Journal for Parasitology 28, 12611267.CrossRefGoogle ScholarPubMed
Kawazu, S., Sugimoto, C., Kamio, T. and Fujisaki, K. (1992). Antigenic differences between Japanese Theileria sergenti and other benign Theileria species of cattle from Australia (T. buffeli) and Britain (T. orientalis). Parasitology Research 78, 130135.CrossRefGoogle ScholarPubMed
Kawazu, S., Kamio, T., Kakuda, T., Terada, Y., Sugimoto, C. and Fujisaki, K. (1999). Phylogenetic relationships of the benign Theileria species in cattle and Asian buffalo based on the major piroplasm surface protein (p33/34) gene sequences. International Journal for Parasitology 29, 613618.CrossRefGoogle ScholarPubMed
Kim, J. Y., Yokoyama, N., Kumar, S., Inoue, N., Yamaguchi, T., Sentoku, S., Fujisaki, K. and Sugimoto, C. (2004). Molecular epidemiological survey of benign Theileria parasites of cattle in Japan: detection of a new type of major piroplasm surface protein gene. The Journal of Veterinary Medical Science 66, 251256.CrossRefGoogle ScholarPubMed
Kim, S. J., Tsuji, M., Kubota, S., Wei, Q., Lee, J. M., Ishihara, C. and Onuma, M. (1998). Sequence analysis of the major piroplasm surface protein gene of benign bovine Theileria parasites in east Asia. International Journal for Parasitology 28, 12191227.CrossRefGoogle ScholarPubMed
Matsuba, T., Sugimoto, C., Hattori, M., Sako, Y., Fujisaki, K. and Onuma, M. (1995). Expression of a 32 kilodalton Theileria sergenti piroplasm surface protein by recombinant baculoviruses. International Journal for Parasitology 25, 939943.CrossRefGoogle ScholarPubMed
Mehlhorn, H. and Schein, E. (1984). The piroplasms: lifecycle and sexual stages. Advances in Parasitology 23, 37103.CrossRefGoogle Scholar
Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on a personal computer. Computer Applications in the Biosciences 12, 357358.Google Scholar
Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Shiels, B. R., d'Oliveira, C., McKellar, S., Ben-Miled, L., Kawazu, S. and Hide, G. (1995). Selection of diversity at putative glycosylation sites in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites. Molecular and Biochemical Parasitology 72, 149162.CrossRefGoogle ScholarPubMed
Sim, B. K. L, Orlandi, P. A., Haynes, J. D., Kolts, F. W., Carter, J. M., Camus, D., Zegans, M. E. and Chulay, J. D. (1990). Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoic invasion. The Journal of Cell Biology 111, 18771884.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2003). PAUP: Phylogenetic Analysis Using Parsimony. Version 4.0b10. Sinauer Associates, Sunderland, MA, USA.Google Scholar
Tanaka, M., Onoe, S., Matsuba, T., Katayama, S., Yamanaka, M., Yonemichi, H., Hiramatsu, K., Baek, B. K., Sugimoto, C. and Onuma, M. (1993). Detection of Theileria sergenti infection in cattle by polymerase chain reaction amplification of parasite-specific DNA. Journal of Clinical Microbiology 31, 25652569.CrossRefGoogle ScholarPubMed
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The Clustal-windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
Uilenberg, G., Perié, N. M., Spanjer, A. A. and Franssen, F. F. (1985). Theileria orientalis, a cosmopolitan blood parasite of cattle: demonstration of the schizont stage. Research in Veterinary Science 38, 352360.CrossRefGoogle ScholarPubMed
Zakimi, S., Kim, J. Y., Oshiro, M., Hayashida, K., Fujisaki, K. and Sugimoto, C. (2006). Genetic diversity of benign Theileria parasites of cattle in the Okinawa Prefecture. The Journal of Veterinary Medical Science 68, 13351338.CrossRefGoogle ScholarPubMed
Supplementary material: File

Jeong supplementary material

Data 1.doc

Download Jeong supplementary material(File)
File 86 KB
Supplementary material: File

Jeong supplementary material

Data 2.doc

Download Jeong supplementary material(File)
File 46.6 KB