Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T13:23:29.977Z Has data issue: false hasContentIssue false

Dynamics of internal jets in the merging of two droplets of unequal sizes

Published online by Cambridge University Press:  19 April 2016

Chenglong Tang
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA State Key Laboratory of Multiphase Flow and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
Jiaquan Zhao
Affiliation:
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, PR China
Peng Zhang*
Affiliation:
Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, PR China
Chung K. Law*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Center for Combustion Energy, Tsinghua University, Beijing 100084, PR China
Zuohua Huang
Affiliation:
State Key Laboratory of Multiphase Flow and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China
*
Email addresses for correspondence: pengzhang.zhang@polyu.edu.hk, cklaw@princeton.edu
Email addresses for correspondence: pengzhang.zhang@polyu.edu.hk, cklaw@princeton.edu

Abstract

The head-on collision, merging and internal mixing dynamics of two unequal-sized droplets were experimentally studied and interpreted, using water, $n$-decane and $n$-tetradecane to identify the distinguishing effects of surface tension and liquid viscosity on the merging and mixing patterns. It is shown that, upon merging of water and $n$-decane droplets, mushroom-like jets of dissimilar characteristics develop within the merged mass for small and large values of the impact Weber number (We), and that such jets are not developed for intermediate values of We. Furthermore, such jet-like mixing patterns were not observed for droplets of $n$-tetradecane, which has smaller surface tension and larger viscosity as compared to water. A regime nomogram relating the Ohnesorge and symmetric Weber numbers is constructed, providing a unified interpretation of the internal mixing patterns. Numerical simulations based on an improved volume-of-fluid method and an adaptive mesh refinement algorithm provide auxiliary diagnoses of the flow fields and the observed phenomena.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first and second authors contributed equally to this work.

References

Anilkumar, A. V., Lee, C. P. & Wang, T. G. 1991 Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3, 25872591.CrossRefGoogle Scholar
Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
Blanchette, F. 2010 Simulation of mixing within drops due to surface tension variations. Phys. Rev. Lett. 105, 074501.CrossRefGoogle ScholarPubMed
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.CrossRefGoogle Scholar
Blanchette, F., Messio, L. & Bush, J. W. M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21, 072107.CrossRefGoogle Scholar
Bouwhuis, W., Van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., Van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.Google Scholar
Chen, X. D., Ma, D. J., Yang, V. & Popinet, S. 2013 High-fidelity simulations of impinging jet atomization. Atomiz. Sprays 23, 10791101.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W. K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.CrossRefGoogle Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Hsiao, M. Y., Lichter, S. & Quintero, L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31, 35603562.CrossRefGoogle Scholar
Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation on the collision behavior of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
Keij, D. L., Winkels, K. G., Castelijns, H., Riepen, M. & Snoeijer, J. H. 2013 Bubble formation during the collision of a sessile drop with a meniscus. Phys. Fluids 25, 082005.CrossRefGoogle Scholar
Law, C. K. 2012 Fuel options for next-generation chemical propulsion. AIAA J. 50, 1936.CrossRefGoogle Scholar
Liu, D., Zhang, P., Law, C. K. & Guo, Y. C. 2013 Collision dynamics and mixing of unequal-size droplets. Intl J. Heat Mass Transfer 57, 421428.CrossRefGoogle Scholar
Nobari, M. R.1993 Numerical simulations of drop collisions and coalescence. PhD thesis, University of Michigan.CrossRefGoogle Scholar
Pan, K. L., Law, C. K. & Zhou, B. 2008 Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J. Appl. Phys. 103, 064901.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Rabe, C., Malet, J. & Feuillebois, F. 2010 Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number. Phys. Fluids 22, 047101.Google Scholar
Shankar, P. N. & Kumar, M. 1995 Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7, 737746.CrossRefGoogle Scholar
Solomon, Y., Defini, S. J., Pourpoint, T. L. & Anderson, W. E. 2013 Gelled monomethyl hydrazine hypergolic droplet investigation. J. Propul. Power 29, 7986.CrossRefGoogle Scholar
Sun, K., Wang, T., Zhang, P. & Law, C. K. 2015a Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids. Phys. Rev. E 91, 023009.Google Scholar
Sun, K., Zhang, P., Law, C. K. & Wang, T. 2015b Collision dynamics and internal mixing of droplets of non-Newtonian liquids. Phys. Rev. Appl. 4, 054013.CrossRefGoogle Scholar
Tang, C., Zhang, P. & Law, C. K. 2012 Bouncing, coalescence, and separation in head-on collision of unequal-size droplets. Phys. Fluids 24, 022101.Google Scholar
Thomson, J. J. & Newall, H. 1885 On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. 39, 417436.Google Scholar
Thoraval, M. J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 Von Karman vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.Google Scholar
Yeh, S. I., Fang, W. F., Sheen, H. J. & Yang, J. T. 2013 Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid. Nanofluid. 14, 785795.Google Scholar
Zhang, P. & Law, C. K. 2011 An analysis of head-on droplet collision with large deformation in gaseous medium. Phys. Fluids 23, 042102.Google Scholar
Supplementary material: File

Tang supplementary material

Tang supplementary material 1

Download Tang supplementary material(File)
File 373 KB