Logarithmetics of Finite Quasigroups (I)

By Helen Popova
(Received 25th July, 1951.
Read 2nd November, 1951.)

1. Introduction.

The study of non-associative algebras led to the investigation of identities connecting powers of elements of such algebras. Thus Etherington ${ }^{1}$ (1941, 1949, 1951) introduced the concept of the logarithmetic of an algebra, defining it roughly as " the arithmetic of the indices of the general element ".
.Apart from a trivial observation on groups in §2, the only known result concerning logarithmetics of quasigroups seems to be the result due to Murdoch ${ }^{2}$ (1939, Corollary to Theorem 10). In Etherington's terminology this result is expressed by saying that an abelian quasigroup is palintropic, which means that multiplication is commutative in its logarithmetic ($x^{r s}=x^{s r}$).

We introduce a new term quasi-integer; otherwise we follow Etherington in the definitions of $\S 2$.

I am grateful to Dr. I. M. H. Etherington for advice and criticisms.

2. Definitions.

A groupoid is a set closed with respect to a binary operation. A multiplicative groupoid with or without other operations such as + may be called an algebra. A (multiplicative) quasigroup ${ }^{3}$ means a multiplicative groupoid within which the equations $a x=b, y a=b$ determine x and y uniquely, whenever a and b are given; it is abelian (Murdoch, 1939) or entropic (Etherington, 1949) if identically $a b . c d=a c . b d$.

[^0]A power x^{r} of an element x of an algebra A is a continued product in which all factors are equal to x. The symbol r used to denote the power is the index of the power. The product of two powers x^{r}, x^{8} is denoted by x^{r+s}; a power of a power is indicated as a product in the index: $\left(x^{r}\right)^{s}=x^{r s}$; an iterated power is indicated by a power in the index: $\left(x^{r}\right)^{r}=x^{2}$, $\left(\left(x^{r}\right)^{r}\right)^{r}=x^{r^{2}}$, etc. For example

$$
x^{2.2+1}=\left(x^{2}\right)^{2} x ; \quad x^{(1+2.2) 2}=\left(x \cdot\left(x^{2}\right)^{2}\right)\left(x .\left(x^{2}\right)^{2}\right)
$$

The degree of a power of x is the number of its factors x. Powers in which factors are absorbed one at a time on the right are called principal. The principal power of degree δ will be denoted x^{δ}. All other powers can be expressed in terms of principal powers by suitably partitioning the index and using brackets when necessary. Thus $x^{4}=x^{(2+1)+1}$ is distinguished from $x^{1+3}=x^{1+(2+1)}$ and from $x^{1+(1+2)}$ and $x^{(1+2)+1}$.

A quasi-integer of an algebra A will be defined as the class of indices r, s, \ldots such that $x^{r}=x^{s}=\ldots$ for all x of A.

It is easily seen that the quasi-integers can be added and multiplied like indices without inconsistency, and like indices they obey the rules ${ }^{1}$:

$$
(r s) t=r(s t), \quad r(s+t)=r s+r t
$$

but in general

$$
r+(s+t) \neq(r+s)+t, \quad r+s \neq s+r, \quad r s \neq s r, \quad(s+t) r \neq s r+t r .
$$

The algebra consisting of all quasi-integers of A together with operations (+), (.) is defined to be the logarithmetic of A and denoted by L_{A}. Thus for example the logarithmetic of a commutative or associative algebra is commutative or associative with respect to addition; in particular the logarithmetic of a group with finite period p is isomorphic with the ring of integers modulo p.

The set of all quasi-integers of A together with the operation of addition or multiplication only will be denoted by $L_{\Lambda}(+), L_{\Delta}($. respectively.

Every subset of a finite quasigroup Q which is closed with respect to multiplication satisfies the quotient axiom and is therefore a subquasigroup. In particular all powers of an element a of Q form a quasigroup Q_{a}. We

[^1]shall'say that Q_{a} is generated by a; its logarithmetic will be called the logarithmetic of a and denoted by L_{a}.

3. Quasi-integers of a finite algebra.

A quasi-integer of an algebra A consisting of a finite number of elements can be represented by the vector

$$
r=\left[\begin{array}{c}
a_{1}^{r} \tag{1}\\
\vdots \\
a_{n}^{r}
\end{array}\right]
$$

which sometimes will be written as:

$$
r=\left\{a_{p}^{r}\right\}_{p=1, \ldots, n} \quad \text { or } \quad r=\left\{a_{1}^{r}, \ldots, a_{n}^{r}\right\}
$$

where a_{1}, \ldots, a_{n} are all elements (or, if preferred, all non-idempotent elements) of A. Two indices r, s are equal in L_{A} (i.e. belong to the same quasi-integer) if and only if $a_{i}^{r}=a_{i}^{s}$ for $i=1,2, \ldots, n$, that is if and only if they are represented by the same vectors. If corresponding elements of two vectors $r=\left\{a_{p}{ }^{r}\right\}$ and $s=\left\{a_{p}^{s}\right\}(p=1,2, \ldots, n)$ are multiplied, we obtain $\left\{a_{p}{ }^{r+s}\right\}$ which is the vector denoting $r+s$. The s-th powers of the elements of $r=\left\{a_{p}{ }^{r}\right\}_{p=1, \ldots, n}$ form the vector $\left\{a_{p}{ }^{r s}\right\}_{p=1, \ldots, n}$ which is r. Consequently, if quasi-integers r, s are given as $r=\left\{\lambda_{p}\right\}, s=\left\{\mu_{p}\right\}$ where $p=1,2, \ldots, n$, then

$$
r+s=\left\{\lambda_{p} \mu_{p}\right\}, \quad r s=\left\{\lambda_{p}^{s}\right\}, \quad s r=\left\{\mu_{p}^{r}\right\} \quad(p=1,2, \ldots, n)
$$

Multiplication in L_{A} has an obvious matrix representation. If in the k-th row of the vector r stands the element a_{i} of A, then the element in the k-th row of the vector $r s$ is $a_{i}{ }^{s}$ which we find in the i-th row of the vector s. If we denote a_{i} by a row vector with l in the i-th column and other elements zero:

$$
\begin{equation*}
a_{i}=(0 \ldots 010 \ldots 0) \tag{2}
\end{equation*}
$$

and write vectors r, s as matrices formed by substituting the vectors (2) in the expressions (1) of r, s, then $r s$ is the matrix product.

Example 1. Investigating the logarithmetic of the quasigroup Q consisting of elements $1,2,3,4$, given by the multiplication table

	1	2	3	4
		3		
1	3	4	2	
2	4	2	1	3
3	1	3	2	4
4	2	4	3	1

we observe that any quasi-integer of L_{Q} can, since 2 is idempotent, be completely determined by the set of elements ($1^{r}, 3^{r}, 4^{r}$)=(m, n, s), where m, n, s can take any values amongst $1,2,3,4$. Thus:

Quasi-integers: $\quad 1 \quad 2 \quad 31+241+32.2(1+2)+11+(1+2) 5 \ldots$ Elements of Q :

1	1	3	1	4	3	3	2	2	2	$\mathbf{1}$
3	3	2	1	3	4	1	2	2	2	3
4	4	1	2	2	3	4	3	3	4	4

and we may denote quasi-integers of L_{Q} by vectors such as

$$
\begin{aligned}
& 1=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]=(1+3)+3 ; \quad(1+2)=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right] ; \quad 2.2=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right] ; \quad 2=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] ; \\
& 1+(1+2)=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right] ; \ldots .
\end{aligned}
$$

It may be verified that the 64 such vectors all occur in L_{Q}.
Example 2. Suppose that $r=\{3,2,1,4\} s=\{3,2,4,3\}$. (This could refer to the logarithmetic of Ex. 1, with $r=1+3, s=4$, since the element 2 is idempotent.) Then we have $1^{s}=3,2^{s}=2,3^{s}=4,4^{s}=3$, giving

$$
r s=\left\{3^{s} ; 2^{s} ; 1^{s}, 4^{s}\right\}=\{4,2,3,3\} .
$$

As in the previous section, denoting the elements $1,2,3,4$ of Q by row vectors ($1 . .$.), (.1..), (..1.), (...1) respectively, we can write the column vectors r, s as matrices. In this notation

$$
r s=\left[\begin{array}{c}
\ldots \\
. \\
1
\end{array} \cdot .\right.
$$

4. Properties of $L_{Q}(+)$.

Let $L_{i}(i=1,2, \ldots)$ be any finite or infinite set of algebras, distinct or identical, with operations $(+)$, (.) uniquely defined by

$$
q_{i}+p_{i}=r_{i}, \quad q_{i} p_{i}=t_{i}, \quad q_{i}, p_{i}, r_{i}, t_{i} \varepsilon L_{i} \quad(i=1,2, \ldots)
$$

and consider the set L^{\times}of all symbols

$$
\left\{q_{1}, q_{2}, \ldots\right\}, \quad q_{i} \in L_{i} \quad(i=1,2, . .)
$$

with operations (+), (.) defined as

$$
\left\{q_{1}, \ldots\right\}+\left\{p_{1}, \ldots\right\}=\left\{r_{1}, \ldots\right\}, \quad\left\{q_{1}, \ldots\right\}\left\{p_{1}, \ldots\right\}=\left\{t_{1}, \ldots\right\} ;
$$

then L^{\times}is called the direct union ${ }^{1}$ of L_{1}, L_{2}, \ldots.
Lemma. The direct union L^{\times}of the logarithmetics L_{i} of all the elements $1,2, \ldots, n$ of a finite quasigroup is a finite quasigroup with respect to addition.

For the elements of L^{\times}are vectors such as

$$
r=\left\{p^{r}\right\}, \quad s=\left\{p^{s}\right\} \quad(p=1,2, \ldots, n)
$$

Obviously $r+s=\left\{p^{r_{r}+s_{p}}\right\}$ belongs to L^{\times}, and it remains to prove that the equations $r+x=s, y+r=s$ always have unique solutions x, y in L^{\times}.

Now $r+x=s$ is equivalent to the set of n equations

$$
p^{r_{\rho}} x_{p}=p^{\varepsilon_{r}}
$$

Since all powers of p form a quasigroup, each of these equations has a unique solution of the form $x_{p}=p^{x_{r}}$. Thus $r+x=s$ has the unique solution $x=\left\{p^{x_{p}}\right\}$, which is in L^{\times}. Similarly for $y+r=s$.

Theorem 1. The logarithmetic of a finite quasigroup is a quasigroup with respect to addition.

For the vectors of L_{Q}, say $r=\left\{p^{r}\right\}, s=\left\{p^{s}\right\}, p=1, \ldots, n$, may also be regarded as vectors of L^{\times}. Thus the logarithmetic of Q is a subset of a finite additive quasigroup L^{\times}, closed with respect to addition, and therefore is a quasigroup with respect to addition.

Example 3. The quasigroup Q of order four

	1234			
1		4	3	
2		1	2	
3	1	3		2
4		2	1	

has logarithmetic consisting of only four quasi-integers

$$
1=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad 2=\left[\begin{array}{l}
2 \\
1 \\
4 \\
3
\end{array}\right], \quad 3=\left[\begin{array}{l}
3 \\
4 \\
1 \\
2
\end{array}\right], \quad 1+2=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right] .
$$

In this case $L_{Q}(+)$ is isomorphic with Q.

[^2]
5. L_{Q} as a subdirect union.

Let L^{\times}be a direct union of an arbitrary set of additive quasigroups L_{i}, the elements of L^{\times}being denoted by

$$
l=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}, \quad \alpha_{i} \in L_{i} .
$$

If L is a subquasigroup of L^{\times}, and

$$
q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \in L
$$

the correspondence $q \rightarrow q_{i}$ defines a homomorphism of L into L_{i} and therefore on to a subquasigroup L_{i}^{\prime} of L_{i}. If for every $i L_{i}^{\prime}=L_{i}, L$ is a subdirect union of the quasigroups L_{i}.

Let Q be a quasigroup $(1,2, \ldots, n)$. We denote by L_{i} the logarithmetic of the element i of $Q(i=1,2, \ldots, n)$.

Let i^{x} take n_{i} distinct values $\beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n_{i}}$ when x varies $(i=1,2, \ldots, n)$. The direct union

$$
L^{\times}=L_{1}+L_{2}+\ldots+L_{n}
$$

consists of all $n_{1} n_{2} \ldots n_{n}$ possible vectors

$$
\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \text { where } a_{i} \varepsilon L_{i}
$$

The logarithmetic of Q does not necessarily contain all those vectors. However (Theorem 1), it forms a quasigroup with respect to addition, which is a subquasigroup of L^{\times}.

All the vectors representing the quasi-integers of L_{Q} may be written in a matrix

$$
L=\left[\begin{array}{ccc}
\alpha_{11} & \ldots & \alpha_{1 N} \\
\ldots & \ldots & \ldots \\
\alpha_{n 1} & \ldots & \alpha_{n N}
\end{array}\right]
$$

where n is the order of Q, N that of L_{Q}, and $\alpha_{i j} \varepsilon L_{i}$.
From the fact that L_{Q} is the set of all distinct values of $\{1, \ldots, n\}^{x}$ when x is varied, it follows that in the i-th row of the matrix L there appear necessarily all distinct elements of L_{i}. Therefore, if we collect the quasiintegers with $\beta_{i 1}, \beta_{i 2}, \ldots, \beta_{i n_{i}}$ in the i-th row into classes $A_{i 1}, \ldots, A_{i n}$ respectively, the homomorphisms $q \rightarrow q_{i}$ above are

$$
A_{i 1} \rightarrow \beta_{i 1}, \quad A_{i 2} \rightarrow \beta_{i 2}, \ldots, A_{i n_{i} \rightarrow} \rightarrow \beta_{i n_{i}} \quad(i=1,2, \ldots, n)
$$

Each of them defines the homomorphism of L_{Q} on to L_{i}

$$
L_{Q} \rightarrow L_{i} \quad(i=1,2, \ldots, n)
$$

and we have proved:
Theorem 2. The logarithmetic of a quasigroup is a subdirect union of the logarithmetics of its elements.

By the order n_{i} of the element i of a quasigroup Q we understand the order of the quasigroup generated by it.

Corollary 1. The order of L_{Q} cannot exceed the product of the orders of all elements of Q :

$$
N \leqslant n_{1} n_{2} \ldots n_{n}
$$

For $n_{1} n_{2} \ldots n_{n}$ is the order of the direct union.
Corollary 2. If L_{Q} has order $N=n_{1} n_{2} \ldots n_{n}$, then it is the direct union of the logarithmetics of all elements of Q.
(Compare Example 1.)
Example 4. The logarithmetic of the quasigroup.

1		3	4	1
2		41	2	
3		32	1	4
4		14	3	

consists of 16 quasi-integers which are the columns of the matrix

$$
L=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 \\
2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 3 & 3 & 3 & 3 \\
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3 & 2 & 1 & 4 & 3
\end{array}\right] .
$$

The logarithmetics of the elements $1,2,3,4$ are

$$
L_{1}=(1,2,3,4), \quad L_{2}=(1,2,3,4), \quad L_{3}=(1,2,3,4), \quad L_{4}=(1,2,3,4)
$$

So the direct union consists of 256 vectors. The logarithmetic, however, has order 16, and the homomorphisms $q \rightarrow q_{2}$ are :
(1) $q \rightarrow q_{1}$:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 1,\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 2,\left[\begin{array}{llll}
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 3,\left[\begin{array}{llll}
4 & 4 & 4 & 4 \\
3 & 3 & 3 & 3 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 4
$$

which implies $L_{Q} \rightarrow L_{1}$. Similarly
(2) $q \rightarrow q_{2}$:

$$
\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 1,\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 2,\left[\begin{array}{llll}
4 & 4 & 4 & 4 \\
3 & 3 & 3 & 3 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 3,\left[\begin{array}{llll}
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right] \rightarrow 4,
$$

(3) $q \rightarrow q_{3}$:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right] \rightarrow 1,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right] \rightarrow 2,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4
\end{array}\right] \rightarrow 3,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
4 & 4 & 4 & 4 \\
3 & 3 & 3 & 3
\end{array}\right] \rightarrow 4,
$$

(4) $q \rightarrow q_{4}:$

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right] \rightarrow 1,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right] \rightarrow 2,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
4 & 4 & 4 & 4 \\
3 & 3 & 3 & 3
\end{array}\right] \rightarrow 3,\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4
\end{array}\right] \rightarrow 4,
$$

which shows that the homomorphisms $q \rightarrow q_{2}, q \rightarrow q_{3}, q \rightarrow q_{4}$ imply the homomorphisms

$$
L_{Q} \rightarrow L_{2}, \quad L_{Q} \rightarrow L_{3}, \quad L_{Q} \rightarrow L_{4}
$$

respectively. So that, for every $i, L_{i}^{\prime}=L_{i}$, and L_{Q} is a subdirect union of L_{1}, L_{2}, L_{3} and L_{4}.

Department of Mathematics,

 University of Aberdeen.
[^0]: ${ }^{1}$ I. M. H. Etherington, "Some non-associative algebras in which the multiplication of indices is commutative", Journal London Math. Soc., 16 (1941), 48-55; "Nonassociative arithmetics", Proc. Roy. Soc. Edinburgh (A), 62 (1949), 44ㄹ-453; "Noncommutative train algebras of rank 2 and 3 ", Proc. London Math. Soc. (2), 52 (1951), 241-252.
 ${ }^{2}$ D. C. Murdoch, " Quasigroups which satisfy certain generalised associative laws " American J. of Math., 61 (1939), 509-522.
 ${ }^{3}$ B. A. Hausmann and O. Ore, "Theory of quasigroups", American J. of Math., 59 (1937), 983-1004.

[^1]: ${ }^{1}$ I. M. H. Etherington, " On non-aseociative combinations ", Proc. Roy. Soc. Edinburgh. 59 (1039), 153-162.

[^2]: ${ }^{1}$ G. Birkhoff, "On the structure of abstract algebras", Proc. Oambridge Phil. Soc., 31 (1935), 433-454.

