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1. Introduction.

The study of non-associative algebras led to the investigation of
identities connecting powers of elements of such algebras. Thus
Etherington1 (1941, 1949, 1951) introduced the concept of the logariihmetic
of an algebra, defining it roughly as " the arithmetic of the indices of the
general element ".

.Apart from a trivial observation on groups in §2, the only known result
concerning logarithmetics of quasigroups seems to be the result due to
Murdoch2 (1939, Corollary to Theorem 10). In Etherington's terminology
this result is expressed by saying that an abelian quasigroup is palintropic.
which means that multiplication is commutative in its logarithmetic
(xrs = ar9r).

We introduce a new term quasi-integer; otherwise we follow
Etherington in the definitions of §2.

1 am grateful to Dr. I. M. H. Etherington for advice and criticisms.

2. Definitions.

A groupoid is a set closed with respect to a binary operation. A
multiplicative groupoid with or without other operations such as + may
be called an algebra. A (multiplicative) quasigroup 3 means a multiplica-
tive groupoid within which the equations ax = b, ya = b determine x and y
uniquely, whenever a and b are given; it is abelian (Murdoch. 1939) or
entropic (Etherington, 1949) if identically ab .cd = ac .bd.

1 1 . M. H. Etherington, " Some non-associative algebras in which the multiplication
of indices is commutative", Journal London Math. Soc, 16 (1941), 48-55; " Non-
associative arithmetics ", Proc. Roy. Soc. Edinburgh (A), 62 (1949), 442-453; " Non-
commutative train algebras of rank 2 and 3 " , Proc. London Math. Soc. (2), 52 (1951),
241-252.

2 D. C. Murdoch, " Quasigroups which satisfy certain generalised associative laws "
American J. of Math., 61 (1939), 509-522.

3 B. A. Hausmann and O. Ore, " Theory of quasigroups ", American J. of Math., 59
(1937), 983-1004.
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A power xT of an element x of an algebra A is a continued product in
which all factors are equal to x. The symbol r used to denote the power
is the index of the power. The product of two powers af, x8 is denoted by
af-^8; a power of a power is indicated as a product in the index: (af )* = af*;
an iterated power is indicated by a power in the index: (af )r = af*,

[(af )rY = xr", etc. For example

.v.2.2+1 — f~2\2~ . ~(l+2.2)2 Ir :r2\2\(r I<r2\*\

The degree of a power of x is the number of its factors x. Powers in
which factors are absorbed one at a time on the right are called principal.
The principal power of degree 8 will be denoted x*. All other powers can
be expressed in terms of principal powers by suitably partitioning the
index and using brackets when necessary. Thus x* = a^2+1)+1 is distin-
guished from z1+3 = â -Ka+w and from a;1^^2) and a*1+2)+1.

A quasi-integer of an algebra A will be defined as the class of indices
r, s, ... such that af = x8 = ... for all x of A.

It is easily seen that the quasi-integers can be added and multiplied
like indices without inconsistency, and like indices they obey the rules1:

(rS)t = r(st), r(8-(-0 = rs+rt,

but in general

r+(s+t) =£(r+s)+t, r+s ^s+r, rs^sr, (s+t)r

The algebra consisting of all quasi-integers of A together with
operations (+), (.) is defined to be the logarithmetic of A and denoted by
LA. Thus for example the logarithmetic of a commutative or associative
algebra is commutative or associative with respect to addition; in
particular the logarithmetic of a group with finite period p is isomorphic
with the ring of integers modulo p.

The set of all quasi-integers of A together with the operation of
addition or multiplication only will be denoted by L^{-\-), LA(.)
respectively.

Every subset of a finite quasigroup Q which is closed with respect to
multiplication satisfies the quotient axiom, and is therefore a subquasigroup.
In particular all powers of an element a of Q form a quasigroup Qa. We

1 1 . M. H. Etherington, " On non-associative combinations ", Proc. Roy. Soc. Edinburgh.
69 (1939), 153-162.
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shall say that Qa is generated by a; its logarithmetic will be called the
logarithmetic of a and denoted by La.

3. Quasi-integers of a finite algebra.

A quasi-integer of an algebra A consisting of a finite number of elements
can be represented by the vector

r = (1)

which sometimes will be written as:
r = K%=i « or r = {a{, ..., an'}

where av ..., an are all elements (or, if preferred, all non-idempotent
elements) of A. Two indices r, s are equal in Lx {i.e. belong to the same
quasi-integer) if and only if a,r = a? for i = 1, 2, ..., n, that is if and only if
they are represented by the same vectors. If corresponding elements
of two vectors r = {ap

r} and s = {ap
s} (p = 1, 2, ..., n) are multiplied, we

obtain {ap
r+s} which is the vector denoting r+s . The s-th powers of

the elements of r = {«/} j,_i,..., n form the vector {«/*%_!,..., „ which is rs.
Consequently, if quasi-integers r, s are given as r = [\p], s = {np} where
p = 1, 2, ..., n, then

r+s = {Xpfip}, rs = {A/}, sr = { /̂} (p = 1, 2, ..., n).

Multiplication in LA has an obvious matrix representation. If in
the k-th row of the vector r stands the element a{ of A, then the element
in the &-th row of the vector rs is a,s which we find in the i-th row of the
vector s. If we denote a{ by a row vector with 1 in the i-th. column and
other elements zero:

a ,= (0...010...0) (2)

and write vectors r, s as matrices formed by substituting the vectors (2)
in the expressions (1) of r, s, then rs is the matrix product.

Example 1. Investigating the logarithmetic of the quasigroup Q
consisting of elements 1, 2, 3, 4, given by the multiplication table

1
2
3
4

1

3
4
1
2

2

1
2
3
4

3

4
1
2
3

4

2

3
4
\
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we observe that any quasi-integer of LQ can, since 2 is idempotent, be
completely determined by the set of elements (lr, 3r, 4r) = (m, n, s), where
m, n, s can take any values amongst 1, 2, 3, 4. Thus:

Quasi-integers:

Elements of Q:

1
3
4

1 2 3 1 + 2 4 1 + 3 2 .2 (l + 2)+l

1 3 1 4 3 3 2 2
3 2 1 3 4 1 2 2
4 1 2 2 3 4 3 3

2
2
4

5 ...

1
3
4

and we may denote quasi-integers of LQ by vectors such as

l = [T| = (l + 3) + 3; (1 + 2)= g ] ; 2 .2=[[ | ; 2 = [[];

=|T|T]
It may be verified that the 64 such vectors all occur in LQ.

Example 2. Suppose that r = {3, 2, 1, 4} s = {3, 2, 4, 3}. (This could
refer to the logarithmetic of Ex. 1, with r = 1 + 3, s = 4, since the element 2
is idempotent.) Then we have Is = 3, 2s = 2, 3s = 4, 4s = 3, giving

rs = {3s, 2 \ 1«, 4«} = {4, 2, 3, 3}.

As in the previous section, denoting the elements 1, 2, 3, 4 of Q by row
vectors (1. . . ) , (. 1..), (.. 1.), ( . . .1) respectively, we can write the
column vectors r, s as matrices. In this notation

-. . 1 .-
. 1. .
1

. . . . 1 -

~ : i ' : n

l

- . . . 1-
. 1 . .
. . 1 .

L . . 1 . - .

4. Properties of LQ(-\-).

Let L, {i = 1, 2, ...) be any finite or infinite set of algebras, distinct or
identical, with operations ( + ) , ( .) uniquely denned by

Pi,

and consider the set Lx of all symbols

(i = 1, 2, ...)

l » = l , 2, .. ).
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with operations (-)-), (.) denned as

then L x is called the direct union1 of Li, L2

LEMMA. The direct union Lx of the logarithmetics Lt of all the elements
1, 2, ..., n of a finite quasigroup is a finite quasigroup with respect to addition.

For the elements of Lx are vectors such as

( j > = 1, 2 , . . . , n).

Obviously r-\-s = {prr+*r} belongs to Lx, and it remains to prove that the
equations r-\-x = s, y-\-r = s always have unique solutions x, y in Lx.

Now r-\-x = s is equivalent to the set of n equations

Since all powers of p form a quasigroup, each of these equations has a
unique solution of the form xp=pxr. Thus r-\-x = s has the unique
solution x = {pxp}, which is in Lx. Similarly for y-\-r = s.

THEOREM 1. The logarithmetic of a finite quasigroup is a quasigroup
with respect to addition.

For the vectors of LQ, say r = {pr\, s = {p"), p= I, ...,n, may also be
regarded as vectors of Lx. Thus the logarithmetic of Q is a subset of a
finite additive quasigroup Lx, closed with respect to addition, and therefore
is a quasigroup with respect to addition.

Example 3. The quasigroup Q of order four

1 2 3 4

1
2
3
4

has logarithmetic consisting of only four quasi-integers

~n ra
31 =

I

3 = 1 j I, l -(-Z = | g

i_2J Ll
In this case LQ(+) is isomorphic with §.

1 G. Birkhoff, "On the structure of abstract algebras", Proe. Cambridge Phil. Soc.,
31 (1935), 433-454.
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5. LQ as a subdued union.

Let Lx be a direct union of an arbitrary set of additive quasigroups Lb

the elements of L* being denoted by

Z = {ax, aa, ..., <xn}, a,ei/,-.

If L is a subquasigroup of L*, and

the correspondence <? ->• <?,• defines a homomorphism of L into Ls and therefore
on to a subquasigroup L{ of Lt. If for every i L/ = Lh L is a subdirect
union of the quasigroups Z/,-.

Let Q be a quasigroup (1, 2, ..., n). We denote by L, the logarithmetic
of the element i of Q (i = 1, 2, ..., w.).

Let ix take »(distinct values j3a, ]8,-2,..., ]8in. when a; varies (i = 1, 2,. . . , n).
The direct union

consists of all nx n2... nn possible vectors

{a1; a2, ..., an} where a{eL{.

The logarithmetic of Q does not necessarily contain all those vectors.
However (Theorem 1), it forms a quasigroup with respect to addition,
which is a subquasigroup of Lx .

All the vectors representing the quasi-integers of LQ may be written
in a matrix

La»l •

where n is the order of Q, N that of LQ, and a,-, e L(.

From the fact that LQ is the set of all distinct values of {1, ..., n}x

when x is varied, it follows that in the i-th row of the matrix L there appear
necessarily all distinct elements of L(. Therefore, if we collect the quasi-
integers with (f(1, /?,-2, ..., j3in. in the i-th row into classes An, ..., Ain

respectively, the homomorphisms q-^-q{ above are

Each of them defines the homomorphism of LQ on to Lt

(i= 1, 2, ..., n)
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and we have proved: •

THEOREM 2. The logarithmetic of a quasigroup is a subdirect union of
the logarithmetics of its elements.

By the order n( of the element i of a quasigroup Q we understand the
order of the quasigroup generated by it.

COROLLARY 1. The order of LQ cannot exceed the product of the orders
of all elements of Q :

N ^.^71% ...nn.

For n1n2...nn is the order of the direct union.

COROLLARY 2. If LQ has order N = nln2...nn, then it is the direct
union of the logarithmetics of all elements of Q.

(Compare Example 1.)

Example 4. The logarithmetic of the quasigroup.

1 2 3 4

1
2
3
4

2
4
3
1

3
1
2
4

4
2
1
3

1
3
4
2

consists of 16 quasi-integers which are the columns of the matrix

rl 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4-i
2 2 2 2 1 1 1 1 4 4 4 4 3 3 3 3
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

u2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3J

The logarithmetics of the elements 1, 2, 3, 4 are

Lx = (1, 2, 3, 4), Ls = (1, 2, 3, 4), L3 = (1, 2, 3, 4), L4 = (1, 2, 3, 4).

So the direct union consists of 256 vectors. The logarithmetic, however,
has order 16, and the homomorphisms q-+q, are:

(1)

-1111-
2 2 2 2
12 3 4
-2 14 3-

-2 2 2 2"
1 1 1 1
12 34
-2 14 3_

->2,

-3 3 3 3H
4 444
12 34
.2 14 3-

-•3,

-4 4 4 4-1
3 3 3 3
12 34

L2 14 3.
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which implies

(2) q^q2:

[-2 2 2 2n
j 1 1 1 1
112 3 4
L2 1 4 3 J

(3)

(4)

• 1 ,

r l 2
2 1

2 3 4-1
4 3

L2
1 1 1 1 !
2 2 2 2J

Ll,

^ Similarly

r l 1 1 1-1
2 2 2 2
12 3 4

L2 1 4 3J

2 14 3
2 2 2 2

Ll 1 1 U

- • 2 ,

4 4 4 4-1

- • 3 ,

L2 1 4 3

r l 2
2 1 4 3
3 3

L4 4

3 3 J
4 4J

r 1 2 3 4-1
2 1 4 3 I
2 2 2 2 1

Ll 1 1 l J

which shows that the homomorphisms
homomorphisms

L L i

-3 3 3 3n
4 4 4 4
12 3 4

L 2 1 4 3

12 3 4n
2 14 3
4 4 4 4

L3 3 3 3J

r l
2
1

_2

2
1
1
2

3
4
1
2

4"
3
1
2_

"*" '

- 1
2
4

_3

2
1
4
3

3
4
4
3

4-
3
4
3_

->3,

- 1
2
3

_4

2
1
3
4

3
4
3
4

4-1
3
3
4_

• 4 ,

imply the

respectively. So that, for every i, L,' == L(, and Le is a subdirect union of
Lv L2, L3 and Li.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF ABERDEEN.

https://doi.org/10.1017/S0013091500021325 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021325

