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ON ACCESSIBLE SUBRINGS OF ASSOCIATIVE RINGS

by R. R. ANDRUSZKIEWICZ
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We describe for every natural n the class of rings R such that if R is an accessible (left accessible) subring of a
ring then R is an n-accessible (n-left-accessible) subring of the ring. This is connected with the problem of the
termination of Kurosh's construction of the lower (lower strong) radical. The result for n = 2 was obtained by
Sands in a connection with some other questions.

1980 Mathematics subject classification (1985 Revision): 16A21.

It was unknown for a long time whether for every natural number n 2:2 there exists a
homomorphically closed class Jt of rings such that Jtn-2

z£^n-i=^n> where Jt{

denotes the ith class in the Kurosh's chain of rings determined by Jt (cf. [8]). The
problem was solved positively in [1] and then many authors contributed to the topic
obtaining several related results (cf. [3,4,5,9]). It is not difficult to observe (Proposition
3) that the original problem is equivalent to the question whether for every natural
number n~2/l there exists a homomorphically closed class Jt of rings such that

(p)n: if a ring R contains a non-zero n-accessible subring in Jt then R contains a
non-zero n—1-accessible subring in Jt.

In this paper we study a related question. Namely we describe for every n ^ 2 the class
0 = {/l|if S^A is an n-accessible subring of R then S is an n — l-accessible subring of R},
which is naturally connected with a description of rings A such that the class {A}
satisfies (p)n. We also describe the class Ln = {/1 |if S^A is an n-left-accessible subring of
R then S is an n— 1 -left-accessible subring of R}, which is related to the Kurosh's
construction of the lower left strong radicals (cf. [5]). Our results generalize Sands'
Theorem 1 of [6] which says (in our terminology) that i2 = 0.2 = the class of idempotent
rings. It is worthy to mention that Sands obtained his result studying some other
questions of associative rings.

All rings considered in the paper are associative. Given a ring R we denote:

R +—the additive group of R.
R° —the trivial ring defined on the group R +.
R* —the ring R if R has an identity element and the usual extension of R to a ring

with identity by the ring of integers Z in another case.

We use / o R(I < R) to denote that / is an ideal (left ideal) of R.
A subring A of a ring R is called an n-accessible (n-left-accessible) subring of R if
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there exist subrings Ro, Rlt..., Rn of R such that Rn = A, R0 = R and Ri<aRi_1

( R ^ R j . j ) for i=l,2,...,n. One can easily check that these subrings are characterised
as follows:

Proposition 1. Let A be a subring of a ring R. Then

(i) A is an n-left-accessible subring of R if and only if RA" ^ A;

(ii) A is an n-accessible subring of R if and only if Rn = A, where R0 = R and
Ri + l=RtARf for i = 0,1,2,....

Let Jt be a homomorphically closed class of rings. Then the class Jtx = {R | every
nonzero homomorphic image of R contains a nonzero ideal / which is in Jt} is
homomorphically closed as well. By induction for every natural number n ^ 2 , the class
Jtn is defined as Jtn = (J?n-l)l. In addition we put Jto = Jt. The class Jtn is called the
nth Kurosh's class determined by Jt.

The following properties of classes Jtn were established in [2].

Proposition 2. (i) A ring R is in Jtn if and only if every nonzero homomorphic image of
R contains a nonzero n-accessible subring which is in Jt.

(ii) IfAeJt is a nonzero n-accessible subring of a ring R then R*AR* eMn_1.

Corollary. Let Jl be a homomorphically closed class of rings. Then for every natural
number n>\

(i) if Jt satisfies (p)n then Jtn-t = Jtn;

(ii) if Jtn_2 = Jtn_1 then Jt satisfies (p)n;

(iii) Jt satisfies (p)n + i if and only if Jl\ satisfies (p)n.

Proof, (i) is an immediate consequence of Proposition 2(i).

(ii) Suppose that AeJt is a nonzero n-accessible subring of R. By Proposition 2(ii),
R*AR*eJtn. Since Jtn_2 = Jtn_l, we have also Jin_2 = Jln so R*AR*eJ?n_2. By
Proposition 2(i) R*AR* contains a nonzero n — 2-accessible subring BeJt. However
R*AR* is an ideal of R, so B is an n — 1-accessible subring of R.

(iii) Let AeJtx be a nonzero n-accessible subring of a ring R. Since AeJfx, A
contains a nonzero ideal IeJf. Obviously / is an n+ 1-accessible subring of R. Hence,
since Jt satisfies (p)n+1, R contains a nonzero n-accessible subring BeJt. Thus there
exist subrings B = B B < B n - 1 < B n . 2 < - < B 0 = R. By Proposition 2(ii), C =
B*_2BB*_2eJ(l. Obviously C is a nonzero n —1-accessible subring of/?.

Suppose now that Jtt satisfies (p)n. Let A = An + l<3 • -<i A0 = R where O^AeJt.
Then by Proposition 2(ii) B = A*_lAA*_leJti is an n-accessible subring of R. Hence,
since Jt\ satisfies (p)n, R contains a nonzero n—1-accessible subring CeJtt. Since
CeJtlt C contains a nonzero ideal IeJt. Obviously / is a nonzero n-accessible subring
ofR.
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The following example shows that the converse to Corollary (i) does not hold for
n = 2. We have not been able to construct similar examples for n > 2.

Example. Let Jl = {R} u {0}, where R is the ring with trivial multiplication on the
quasicyclic group Qp00). It is easy to check that Jix is equal to the class of all rings
whose additive groups are divisible p-groups. Thus Jlx = Jt2. Observe however that Jl
does not satisfy (p)2. Namely

R 0\ (R R\ (R* R*\ .

Every ideal of A is of the form I j , where / is an ideal of R*. This easily shows that

no ideal of A is isomorphic to R.

Proposition 3. The following are equivalent:

(i) for every natural number n there exists a homomorphically closed class Jl such that

(ii) for every natural number n there exists a homomorphically closed class Jl satisfying
(p)n + 2 butnot(p)n + l.

Proof, (i) => (ii). Let n be a natural number and Jl a homomorphically closed class
of rings such that Jln^Jln+l = Jln+2. By the Corollary, Jl satisfies (p)n + 3 but not
(p)n+1. If Jl satisfies (p)n+2 then (ii) is satisfied. If Jl does not satisfy (p)n+2 then by
Corollary (iii), Jlt satisfies {p)n+2 but not (p)n+i, so again (ii) is satisfied.

(ii) => (i). Let n be a natural number and Jl a homomorphically closed class of rings
which satisfies (p)n+2 but not (p)n + x. By the Corollary, Jln-l^Jln+l=Jln + 2. If
Jln = Jln+l then (i) is satisfied. If Jln^Jln+l then (Jll)n^l^.(Jl])n = (Jll)n+i, so again
(i) is satisfied.

Now we pass on to study classes Ln and Dn.

Theorem 1. For every integer n ^ 2 , -4eLn if and only if A" = A"~l.

Proof. Assuming that A" = A"~1 and applying Proposition l(i) one gets immediately
that A e Ln.

Suppose now that A e (Ln. The result is clear if A has an identity. Thus suppose that A

is a ring without identity. Observe that for a right /1-module M, the set ( 1 of
\M \j)

matrices is a ring under the usual matrix operations and
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M oy lo oi ~ V M oi 'vo oy I A M * o

Thus by Proposition l(i), I I is a fc-left-accessible subring of the ring ( ) if
\0 0/ \M Oy

and only if MAk = 0. Put M = A*/An. Clearly MAn = 0, so ( ^ ) is an M-left-accessible

( A 0\ />1 0\ //I 0\

I. Since I \ = Aeln we have that I I is an

«-l-left-accessible subring of (A ° J. Consequently {A*/An)An~i = MAn~1 =0, which

implies that ^ " - 1 =/4". The result follows.

It is clear that every ring R such that R" = 0 but R " " 1 ^ belongs to Ln+1 — Ln, so all
the classes Ln are distinct.

Remark. Observed that for M = A*/A2,

A 0\(A °\^(A

0 0 ) \ A I A 2 Q ] \ M 0

Now applying the arguments used above one can easily get Theorem 1 of [6]. However
it is not difficult to check that the subrings appearing here are isomorphic (if \$A) to
the ones used in [6], so this is only a more visible form of the same proof.

Now we will describe the classes 0n. To get this we need several auxiliary lemmas.

Lemma 1 ([7]). For every radical S and each ring R if R/R2eS then R"/Rn+ieS for
every n= 1,2,... .

Lemma 2. Suppose that /<i R and R2Ql.lfRetin then R/Ie0n.

Proof. If R/I is an ^-accessible subring of a ring A then R © R/I is an n-accessible
subring of the ring R © A. Let us observe that, since R2^I, S = {(r,r + I)\reR} is an
ideal of R © R/I. Clearly S^Rein^in + l. This and the fact that S is an n+ 1-accessible
subring of the ring R © A, imply that S is an n— 1-accessible subring of R © A.
Applying the natural projection of R © A onto A one gets that R/I is an n — 1-accessible
subring of A.

The following lemma can be proved by an easy induction.
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Lemma 3. Let A be a subring of a ring R such that A2=0 and R0 = R, Ri+l = R*ARf,
i = 0, l , . . . . Thenfor every /c = 0 , l , . . . , ARkA=(AR)2"A.

Lemma 4. No class Dn contains K°, where K is afield.

Proof. By the Remark the result is clear for n = 2. Suppose now that n ^ 3 and put
P = K[x]/(xm+1), where m = 2n~2. Let R be the ring of all 2 x 2-matrices over P and

where u = x + {xm+1). Clearly A^K°. We claim that A is an ^-accessible but not
n— 1 -accessible subring of R. For, let R0 = R and Ri + l=RfARf, i = 0 ,1 , . . . . Since

H
and u m + 1 =0 , (AR)mA = 0. Thus by Lemma 3, ARn_2A = 0. This implies that ARn^^ =
Rn_1A = 0, so Rn = A. Consequently Proposition l(ii) implies that A is an n-accessible
subring of R. Suppose now that A is an n — 1-accessible subring of R. Then by
Proposition l(ii), Rn-t = A and consequently ARn_2^A. Since Ri^Rt for every i ^ l
and n - 2 ^ 1 (as n ^

Now

so by the definition of A one gets /IR, 0/4 = 0. Consequently /4Rn_2 = 0 and /l/?n_3/l =
0. Hence by Lemma 3, (AR)2"'3A = 0. Observe that

f u 0 \ / u u W l O N ^ a n d / M< tf
\ oy \-« -uj\o oy

for every s. Thus for s = 2""3 + l, a s #0 . On the other hand a."e(ARf = (AR)2"'3AR = 0, a
contradiction.

Now we prove the main result of the paper.

Theorem 2. For every natural number n ̂  3 the following are equivalent:

(OHeO,,

(ii) the group (R/R2)+ is divisible and torsion.

https://doi.org/10.1017/S0013091500005356 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005356


106 R. R. ANDRUSZKIEWICZ

Proof. Suppose that Rein. Applying Lemma 2 one can assume that R2—0 and
every homomorphic image of R belongs to /„. Now if for a prime p, R/pR^O then R
can be homomorphically mapped onto (Z/pZ)°. This contradicts Lemma 4. Hence for
every prime p, pR = R, so the group R+ is divisible. Now if the group R+ were not
torsion it could be homomorphically mapped onto Q+, where Q is the field of rational
numbers. This would imply that Q°e/n, which contradicts Lemma 4.

Suppose now that the group {R/R2)+ is divisible and torsion. Applying Lemma 1 and
the fact the class of rings with divisible and torsion additive groups is radical one gets
that the group (R/R3)+ is divisible and torsion. However, the multiplication in a ring
with divisible and torsion additive group is trivial, so {R/R3)2 = 0. Thus R2 = R3 and the
ring R2 is idempotent. If R is an accessible subring of a ring P then R2 is also such a
subring of P. Applying Andrunakievich's Lemma and the fact that R2 is an idempotent
ring one gets that R2 is an ideal of P. Since the group (R/R2)+ is divisible and torsion,
the additive group of the ideal / of P/R2 generated by R/R2 is divisible and torsion as
well, so in particular /2 = 0. Consequently R/R2 is a 2-accessible subring of P/R2. Thus
R is an n— 1-accessible subring of P. The result follows.

As an easy consequence of Theorem 2 one gets that I3 = O4 = O5 = - - = the lower
radical class determined by l u T , where 0 is the class of idempotent rings and T is the
class of rings with divisible and torsion additive groups (both these classes are radical).
Recall that by the Remark, l = O2 = fL2. Observe however that i2^h a nd D39̂ Q_3. It is an
easy consequence of the fact that if R is an idempotent ring and A is the ring with
trivial multiplication on an additive group A+ then R(BAel3 and R(BAei3 if and
only if the group A+ is divisible and torsion. The following example shows that not
every ring of i3 is a direct sum of an idempotent ring and a ring with trivial
multiplication.

Example. Let M be a non-zero abelian torsion and divisible group. Observe that the
set

of matrices with the natural operations is a ring such that

and (R/R2)+ ^M. Thus Rei3. Moreover, if / is an ideal of R and
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then

(0 0 m\ / 0 m m1

0 0 0 | = ( 0 0
0 0 0 / \ 0 0

so if m#0 then 7 n R 2 # 0 . This shows that R contains no ideal / such that R2®1 = R.
Hence in particular R is not a direct sum of an idempotent ring and a ring with trivial
multiplication.

Acknowledgement. I am grateful to Professor E. R. Puczylowski for his valuable
suggestions during the preparation of the paper.
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