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Central values of Rankin L-series over real
quadratic fields
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ABSTRACT

We study the Rankin L-series of a cuspidal automorphic representation of GL(2) of
even weight over the rational numbers, twisted by a character of a real quadratic field.
When the sign of the functional equation is 41, we give an explicit formula for the central
value of the L-series, analogous to the formulae obtained by Gross, Zhang, and Xue in the
imaginary case. The proof uses a version of the Rankin—Selberg method in which the theta
correspondence plays an important role. We give two applications, to computing the order
of the Tate—Shafarevich group of the base change to a real quadratic field of an elliptic
curve defined over the rationals, and to proving the equidistribution of individual closed
geodesics on modular curves.
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1. Introduction

Let f be a newform of even weight 2k > 0, level N, and trivial central character. Throughout
the paper we adopt the language of automorphic representations, and denote by 7, the cuspidal
automorphic representation of GL(2, A) associated to f, where A denotes the adeles of the rational
numbers Q. Let K be a real quadratic field of discriminant dg, and let x be a (unitary) Hecke
character of K, trivial on A*. Denote by 7, the automorphic representation of GL(2, A), attached
to y via the Jacquet—-Langlands correspondence.

When the sign of the functional equation for the (completed) Rankin L-series L(s,mf x my)
is +1, we give an explicit formula for its central value. Throughout the paper, we assume that NV,
dk, and the conductor ¢(x) of x are pairwise coprime, and that N is square free. If f is a weight 0
Maass form, we also impose a mild restriction on the archimedean component of 7; (see §4).

Before describing our result in greater generality, we state it in the simplest form, when f has
weight 2, the character y is unramified and all of the primes dividing N split in the quadratic
field K. Then x can be viewed as a character of the narrow class group of K, and the formula can
be written in entirely classical terms (see Theorem 6.3.1 for arbitrary weight):

1 2
Ln(1/2, 7y Xﬂx):\/T—K‘ZX_l(Q)/ wy
Q 7Q

where wy = 27i f(2) dz is a holomorphic differential on the compactified Riemann surface Xo(N) =
H/To(N) (with H the upper half plane and I'y(/V) the standard congruence subgroup of level N) and
Lg, is the L-function with the archimedean component removed. The sum is over I'g(IV)-equivalence
classes of Heegner quadratic forms ) of discriminant dx and level IV, and the integral is over the
closed geodesic g on Xo(N) obtained by projecting the geodesic on the upper half plane connecting
the two real roots of the quadratic polynomial Q(z,1). See §6.2 for the definition of Heegner forms,

and for the correspondence between such forms and ideal classes in the narrow class group of K.

)

The formula can be seen as a generalization of a classical formula for the integral of a weight-
zero Kisenstein series over geodesic cycles attached to ideal classes in real quadratic fields
[Sie61, ch. II, §3]. It extends to the real quadratic case results obtained in the imaginary case
by Gross [Gro87] (for weight-two forms of prime level over Q), by Zhang [ZhaO1] (for weight-two
forms over a totally real number field), and by Xue [Xue02] (for even weight forms). The place of
the Heegner points appearing in the imaginary case is taken in this paper by the geodesic cycles v,
and our result opens the way for applying techniques that have been developed for studying Heegner
points to the study of the geodesic cycles.

One such application in the imaginary case is the use of subconvexity bounds for the central
value L(1/2,7 x my) in [HMO6] to prove the equidistribution of Heegner points in Galois orbits,
via Zhang’s formula, thus generalizing a result of Duke [Duk88]. In the real quadratic case,
we show in the same way that individual long closed geodesics become equidistributed on X (V)
(Theorem 6.5.1).

Another application is a formula for the order of Tate-Shafarevich groups of the base change to
real quadratic fields of an elliptic curve E defined over Q, assuming the Birch and Swinnerton-Dyer
conjecture (§6.4). Since it relates the order of this mysterious group with a geometric invariant
attached to K (the homology class of the sum of geodesic cycles), this formula may be used in the
future to shed light on this group.
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For another application of our formula to a construction of Heegner point analogues over real
quadratic fields using p-adic interpolation of special values of L-functions, see [BD05].

We proceed to describe our result in more detail, while also sketching the method of proof.
Our approach can be applied, in principle, to the imaginary case as well, after suitable modifications
at the infinite place. However, in that case the analogous formula is known, thanks to the work of
Zhang and Xue, hence we concentrate on the real quadratic case in this paper.

Let S be the set of primes dividing N that are inert in K. The assumption about the sign of the
functional equation implies that S has even cardinality, hence there exists a quaternion algebra B
defined over Q and ramified at the primes in S. Fix an embedding of K into B.

By the Jacquet—Langlands correspondence, there is an automorphic representation of B*(A),
denoted by W}L, having the same local L-factors as m¢. In [Wal85], Waldspurger has connected the
nonvanishing of the central value of the Rankin L-series to the nonvanishing of a toric linear form [
defined on the space of adelic automorphic forms ¢ on B*(A) on which the representation W}L acts:

= x)x H(z) d.
)= [, AN )

In the present paper, we make this connection more precise by proving that the central value
L(1/2,7y x m,) is equal to the absolute value of the linear form above evaluated on a specific
automorphic form in the space of 7 up to a nonzero constant (for the precise statement, see
Theorem 5.3.9). In the case that y is unramified, we also determine the constant explicitly
(Theorem 5.4.1). Finally, assuming further that all the primes dividing N split in K, so that B
is the matrix algebra, we rewrite the result in terms of the classical newform f, thus obtaining the
formula stated in the beginning of the introduction (Theorem 6.3.1).

The proof is inspired by Waldspurger’s approach in [Wal85], and by the work of Zhang in the
imaginary case [ZhaOl]. In a first stage, we deduce an integral representation for the L-function
using an adelic version of the Rankin—Selberg method, similar to that developed by Zhang [ZhaO1].
The novelty here is that the Rankin-Selberg integral is taken over the subgroup GLa(A)" of GLa(A)
consisting of matrices with determinant belonging to N /g (A%), and that two of the forms entering
into the integral are constructed using the Weil representation:

L(s,mp x my) = M(S)/ ¢£(9)0x(g; p1)E(s, g5 p2) dg.
Z(A)GL2(Q) T \GLa(A)*

Here ¢ is a newform in the space of m;, while the theta series 0, and the Eisenstein series E
are constructed using the Weil representation attached to the field K, viewed as a quadratic space
over Q with form given by the norm and by a multiple of the norm, respectively. The multiple
is chosen such that the two quadratic spaces above provide an orthogonal decomposition of the
four-dimensional space B, with form given by the reduced norm. The automorphic forms ¢, and £
depend on two Schwartz functions ¢1, 2 on Ag, which are carefully chosen at each place so that
the local zeta integrals are equal to the local Rankin L-functions, up to simple factors. Essential in
this step is the notion of Whittaker newform, which we review in Section 3.

The next step fits in the general philosophy of ‘seesaw dual pairs’ of Kudla [Ku83], which in this
setting has been considered by Roberts [Rob98]. Using the Siegel-Weil formula for SL(2) [KR88],
extended to similitudes in §2.4, we realize the special value E(1/2,g;¢2) as the theta lift of the
trivial character of Ay, and interchange the order of integration in the Rankin-Selberg formula to
obtain

L(1/2, 7 x my) = M 0 (x,y; 0)x(xy™") d dy,
(AXKX\Af)?
with an explicit constant M, where 0¢(z,y) is the Shimizu theta lift of ¢ to the special similitude
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group GSO(By) ~ B x By /A*, the isomorphism being given by (z,y)v = zvy~ . It depends on
the Schwartz function ¢ = 1 ® @y on By.

To identify the form ¢, we need to replace ¢ by a Schwartz function ¢, which differs from ¢
at the primes dividing dx and at infinity. By computing the level and weight of the theta lift, and
using a result of Shimizu [Shi72], we show that it decomposes as follows:

Of(x,y:¢') = Co-(x)d7" (y),

where C' is a constant and qzb}L is an explicit automorphic form on B*(A) belonging to the space
of m. The form (;S}L is determined up to a constant by its weight and level structure
(Proposition 5.3.6), and it is the analogue of the ‘toric newform’ defined by Zhang in the
imaginary quadratic setting. The effect of replacing ¢ by ¢’ is then computed locally, yielding
Theorem 5.3.9.

When x is unramified, the constant C is determined by using a result of Watson [Wat02].

We obtain the explicit formula

Rl
Vi || o752
with R a rational number given in Theorem 5.4.1. The norms are with respect to the adelic Petersson

inner products on GLy(A) and B*(A), with respect to Tamagawa measures on the two groups.
Note that the right-hand side is well-defined, even though qb;L is only determined up to a constant.

L(1/2,m¢ x my) |l(¢;L)‘2

In § 6, we review the theory of optimal embeddings and Heegner forms, and use it to rewrite the
previous formula in the classical language, when x is unramified and the quaternion algebra B is
the matrix algebra. We also discuss two applications of this classical formula.

We point out that the method developed here could equally apply over an arbitrary totally real
base field F in place of QQ and, in fact, the local computations are carried over an arbitrary local field
(except for the even residue characteristic case). However, to keep the exposition clear and to avoid
complications in constructing explicitly the quaternion algebra B, we have restricted ourselves to
working over the rational field.

1.1 Notation

Local fields. When F'is a finite extension of a p-adic field Q,, we denote by wr, Op, Ur a fixed
uniformizer, the ring of integers, and the units of F', respectively. For each integer r > 0, we let
Ur denote the subgroup of Up consisting of units congruent to 1 modulo @y Or. We normalize
the absolute value on F', denoted by |- |z or simply by |-| when there is no danger of confusion,
by requiring that |cp| = ¢~!, where ¢ is the cardinality of the residue field of F. The valuation
on F' is denoted by vp, and it is always normalized by vp(wp) = 1. If F = R, then the absolute
value is the usual one.

Norms. If K/F is a separable quadratic algebra extension of perfect field I, we denote by Ny
the norm Ny p(z) = 2z, where the bar denotes the unique nontrivial involution of K fixing F'.
If K = F@F, we have (z1,72) = (z2,71). If F'is a local field, we also denote by wy /p the character
of F* attached to the quadratic extension K, which is trivial if K is split and is the nontrivial
quadratic character of F* /Ny p K* otherwise.

Subgroups of GL(2). Throughout the paper we denote by G the algebraic group GL(2).
We denote by Z the center of G, by B the Borel subgroup of upper triangular matrices, by N
the unipotent subgroup of B, and by 77 the subgroup of diagonal matrices with lower right entry
equal to 1. If a is a scalar, we denote by i(a) € T1, n(a) € N, the matrices having upper left,
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respectively upper right, entry equal to a. If g € G(F') for some field F', we denote by g1 € SLo(F')

the matrix (é 4 g) 1g.

Adeles and ideles. If F is a number field, we denote by Ap the adele ring of F' and by A} the
group of ideles. We also write A = Ag, and occasionally write Fy or F. instead of Ap and Aj,
respectively (especially when F' is viewed as a vector space over Q).

Congruence subgroups. When F' is a local nonarchimedean field and o« € Op, we consider the
congruence subgroups of GLy(F):

Kl(a):{<z Z)EGLQ(OF): cEaOF,d61+aOF};

Ko(a) = {(‘C‘ 2) € GLo(Op): ce a(’)p}.

If x is a character of conductor C, we often view y as a character of the congruence subgroup
Ko(7%) by acting on the lower right entry of a matrix.

If Fis a global field and N is an integral ideal in the ring of integers of F, we denote by
Ko(N) the subgroup [], Ko(IVy) of GL2(Af), where the product is over all finite places v, and N,
denotes the image of N under fixed embeddings F — F,.

Induced representations. For F a local field and uq, uo two characters of F'*, we denote by
B(p1, o) the induced representation space of functions on G(F') satisfying:

(5 3)9) = m@moia ). foran (5 7)€ )

which are K-finite and locally constant (in the nonarchimedean case) or smooth (in the archimedean
case).

2. Review of the Weil representation

In this section we collect the facts about the Weil representation that are used throughout the paper.
For our purposes, we only need to consider the Weil representation for the dual pair (SL(2),O0(V)),
where V' is an even-dimensional space with a nondegenerate quadratic form (over a local or a
global field). The assumption that the quadratic space V' is even-dimensional implies that the
Weil representation can be viewed as a representation of SL(2), and not of its metaplectic cover.
The only possibly new contribution appears in §2.5, where we compute the level and weight of
various Schwartz functions under the two-dimensional Weil representation.

2.1 The local Weil representation for SL(2)

Let F' be a local field and let V' be a 2n-dimensional vector space over F endowed with a non-
degenerate quadratic form q. We will also denote by ¢ the bilinear form on V:

q(z,y) = q(x +y) — q(z) —q(y).

Let ¢ be a fixed nondegenerate character of F', which we assume is unramified if F' is non-
archimedean.

The Weil representation r, is a representation of SLy(F) depending on 4, attached to the
quadratic space (V,q). In a model suitable for our needs, the Weil representation acts on
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the space S(V') of Schwartz functions on V' as follows:
(5 1) 1) = slaaens
o (§ ) 70 = lafteta)fas)

~

(O ) S0 =2Fw),

Here 7 is an eighth root of unity whose precise value is given in Lemma 2.1.3, w is the discriminant
character of I associated with the quadratic space V, and f(x) = [i, f(y)1(q(z,y)) dy denotes
the Fourier transform with respect to a self-dual Haar measure dy.

The three equations above can be combined into one for g = (‘Cl g) € SLy(F'), with ¢ # 0:

ro(9)p(x) = [ w(—c 1)y /K oyl (ag() + dg(y) — qlz, )] dy. (2.1.1)

The quadratic spaces we shall consider in this paper are either two- or four-dimensional, and they
fall in one of the following two cases:

(i) V is a separable quadratic algebra K over F' (a field or the split algebra);
(ii) V is a quaternion algebra B over F.

These spaces are endowed with a natural quadratic form ¢, that is the norm in the algebra extension
K/F in case (i) and the reduced norm in case (ii). The character w appearing in the definition of
is trivial if K = F'@ F' is a split algebra or a quaternion algebra, while it is the nontrivial character
of I /N, p(K*) if K is a quadratic field extension of F'.

For later use, in the next lemma we record the normalization factor for the self-dual measure
used in the Fourier transform, in case V = K is a quadratic algebra extension of F.

LEMMA 2.1.1. If the different of the quadratic extension K/F' is w} O (s > 0), then the self-dual

. o 2
measure on K is that which gives O measure |wK|i{/ .

The constant v appearing in the definition of the Weil representation is the p-adic version of a
classical Gauss sum. Before giving its value, we recall the following connection between Gauss sums
and local epsilon factors [ZhaO1, §2.1]:

LEMMA 2.1.2. Let 1 be an unramified nontrivial additive character of a nonarchimedean field F,
and let n be a unitary character of F*, of conductor s > 0. Then

1/2 1 _ e(n, ) ifvp(a) = —s,
al /UFT](aa:) Vlaz)d {0 otherwise,

where the measure is normalized such that Op has unit measure, and €(n,) is the epsilon factor
appearing in the functional equation for the zeta function of the character n, as in Tate’s thesis.

An easy modification of the proof of Lemma 1.2 in [JL70] yields the following.
LEMMA 2.1.3. We have the following.

(i) If V = B is a quaternion algebra over F, then v = 1 if B is split, and v = —1 if B is a division
algebra.
(ii) If V = K is a quadratic extension of F, then

v =e(w, ) = / e P(g(x))dx forl > C,
816
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where C' is the exponent of the different of the extension K/F. The measure used in the integral
is normalized as in Lemma 2.1.1.

Finally, a scalar change in the quadratic form modifies the Weil representation as follows.
For A € F*, let rﬁb be the Weil representation associated to the quadratic form ¢'(x) = Aq(z).
Let ', 4/, da’, be the corresponding character, Gauss sum and self-dual measure for the represen-
tation rgp. They are related to the original quantities as follows:

W =w, v =w\)y, di’=|\gdx.
2.2 Local theta correspondence for GL(2)

Jacquet and Langlands used the Weil representation in [JL70] to construct representations of GL(2)
over a local field F, attached to representations of K* or B*, where K is a quadratic extension,
and B is a quaternion algebra over F'. This correspondence preserves L and e factors.

In this paper we are interested mostly in the global construction of the Jacquet-Langlands
correspondence, which will be reviewed in the next section. Therefore, we only state the local
results, without getting into the details of the local construction.

First, let K be a quadratic extension of F, either a field or the split algebra, and let y be a
quadratic character of K*. Denote by , the associated representation of GLy(F") attached to x by
Jacquet and Langlands.

THEOREM 2.2.1 [JL70, Theorem 4.6]. The representation m, of is admissible and irreducible, of
central character wg rX|rx . More precisely, we have the following.

(a) If K = F & F is split, then x = (x1, x2) for two characters of F'* and 7, is the principal series
representation m(x1,X2)-
(b) Ifx does not factor through the norm Ng/r and F is nonarchimedean, then my is supercuspidal.

(¢) If x = doN K/F for a character 6 of F*, then m, is the principal series representation
7'('((5, 5wK/F).

Now, let B be a nonsplit quaternion algebra over F'. Let x be an irreducible (finite-dimensional)
representation of B*. As before, denote by 7, the representation of GLy(F) attached to x.

THEOREM 2.2.2 [JL70, Theorem 4.2]. The representation , is admissible and irreducible, of central
character x|px. More precisely, we have the following.
(a) If the dimension of x is greater then 1 and F' is nonarchimedean, then 7, is supercuspidal.
(b) If x = noNp /r for some character n of F'*, then m, is the discrete series representation
1/2 —-1/2
o175l [-77).

Moreover, all special, and supercuspidal in the nonarchimedean case, representations of GLa(F)
can be obtained in this way.

As a matter of notation, if 7 is a special or supercuspidal representation of GLo(F), we denote
by 7' the irreducible representation of B* whose Jacquet-Langlands lift it is. For other admissible,
irreducible representations of GLg(F'), we set 7% = 0.

2.3 The global theta correspondence for GL(2)

At the global level, the Jacquet—Langlands correspondence of the previous section is a particular
case of a more general construction that relates automorphic forms on GL(2) over a global field F
to automorphic forms on the similitude group of a quadratic space over F'. We first review this more
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general construction, following [HK92], and then specialize to the cases of interest. Throughout this
section, we write A = Ap, and fix a nontrivial character ¢ of A/F.

Let (V,q) be a 2n-dimensional quadratic vector space over F' and assume that V' is anisotropic
over F'. By taking the restricted tensor product of the local Weil representations, we obtain a global
representation:

Tyt O(Va) X SLa(A) — Aut S(Va).
Since we are interested in automorphic forms on GLg(A), we would ideally like to extend this repre-

sentation to the group GO(Vy) x GL2(A). This is not possible without enlarging the representation
space of ry, as in [Wal85], and instead we proceed as follows [HK92, Shi72].

First extend the action of O(Vy) to GO(Vy) by
LW f(w) = v F(h™" ) for h € GO(Va), f € S(Va)

where v : GO(Vy) — A* denotes the similitude factor. This action does not commute with the
action of SLa(A); instead, it satisfies the following global version of Lemma 1.4 in [JL70].

LeMMA 2.3.1. Let h € GO(Vy) and let a = v(h) € A*. Then
- 10 1 0
s 9of0 2).

The lemma allows us to extend the representation 7, to the adelic points of the algebraic group

R:={(h,g9) € GO(V) x GL(2) : v(h) = det g}

for all g € SLa(A).

by defining

r(h,g)f(x) = L(h)ry(g1)f(z) for (h,g) € R(A),
where g = (! auy1)g € SLa(A).

Remark 2.3.2. There is another possible extension of 7y to R(A), given by

fa)f =ro (a(1 gy ) )OS

as in [HK92]. The previous lemma shows that ' and r are isomorphic, but it turns out that the
Siegel-Weil formula of the next section can be more easily generalized to similitudes if one uses r
and not r’. The advantage of working with r rather than with ' was pointed out by Harris and
Kudla in a later paper [HKO01].

Using the extended representation, one can define a theta kernel for (h,g) € R(A) generalizing
the usual theta kernel on O(Vy) x SLa(A):

0(h,g;0) = Y r(h,g)p(x), for p € S(Va).

zeVR

The correspondence ¢ — 0(- ;) defines a map from S(V} ) into the space of functions on R(F)\R(A),
which is intertwining for the action of R(A) (see [HK92, Lemma 5.1.7]).

Let G(A)T be the subgroup of G(A) consisting of elements whose determinant belongs to
v(GO(Va)). Integrating against the theta kernel gives a correspondence between automorphic forms
on GO(Vp)\GO(V,) and automorphic forms on G(F)\G(A), as follows.

If y is an automorphic form on GO(VF)\GO(V4), then for g € G(A)™ define:

0y (g5 ) = O(ch, g;p)x(ch)do,

/O(VF)\O(VA)
818

https://doi.org/10.1112/50010437X06002259 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002259

CENTRAL VALUES OF RANKIN L-SERIES

where h € GO(Vy) with v(h) = detg. The assumption that V' is an anisotropic space over F
guarantees that the domain of integration is compact, so that the integral converges. From the
properties of the theta kernel, it is easy to see that 6, is left invariant under G(F')™, hence it can
be extended to G(F)G(A)T by left invariance under G(F'), and to the whole of G(A) by setting it
equal to 0 off G(F)G(A)™, a subgroup of index two in G(A). The resulting form, still denoted by 6,
is an automorphic form on G(F)\G(A), with central character x|,.xwy, where wy is the discriminant
character of V.

Conversely, if f is an automorphic form on G(F)\G(A), define for h € GO(Vy)
05 (h; o) = / 0(h,ag;¢)f(og)do,
SLz(F)\SL2(A)

where g € G(A) such that det g = v(h). The form 6 is an automorphic form on GO(Vp)\GO(V4),
of central character wywy,, where w; is the central character of f.

Now we specialize the quadratic space (V,q) to the cases of interest in this paper. If (V,q) =
(K, Nk/r) for a quadratic field extension K of F, then the similitude group GO(V') ~ K> x pua,
with K* acting by multiplication, and the nontrivial element in the order two group puo acting
by the nontrivial Galois automorphism of K/F. A Hecke character x of Ay /K* determines a
unique irreducible automorphic representation II(y) of GO(Vp)\GO(Vy,). If we denote by O(x) the
automorphic representation of G(A) generated by 05(g; ¢) when ¢ varies in S(V}) and X in the space
of TI(x), we have the following theorem [HK91, §13].

THEOREM 2.3.3 (Local-global compatibility). Let V' = K be a quadratic field extension of F,
with quadratic form N, p. If x is a Hecke character of Ay /K* = GSO(Va)/GSO(VF) with local
components X, let w, be the restricted tensor product of the local representations m,, defined in
Theorem 2.2.1. Then m,, is isomorphic to the automorphic representation ©(x) of G(A) attached to
X Vvia the global correspondence.

Now, let (V,q) = (B,Np,p) for a quaternion algebra B over F'. The similitude group GO(V) =~
GSO(V) x o, with uo generated by the principal involution of B/F. We identify the special simili-
tude group GSO(V) with BX x B*/F* via the action (z,y)v = zvy~!, for (z,y) € BX x B* and
veV.

Let 7 be a cuspidal automorphic representation of G(F)\G(A), and let 7' be the automorphic
representation of B, attached to m by Jacquet-Langlands (Theorem 2.2.2). Let ©(m) be the set of
functions on B x B of the form 6 (- ; ), for f in the space of m and for ¢ € S(V4). The following
theorem is proved in [Shi72]; see also [Har93] where it is stated in the form given here.

THEOREM 2.3.4 (Shimizu’s correspondence). With the notation above, assume that the central
character of 7 is unitary. Then the set O(rm) is spanned by E ® E°, where E is the space of
automorphic forms on B g on which m'V acts, and E° is the representation space of the contragredient
representation.

2.4 The Siegel-Weil formula

As in the previous section, let V' be a 2n-dimensional quadratic space over the totally real number
field F'. To ensure convergence of the theta integrals, assume that V' is anisotropic over F'. The Weil
representation r = ry,, attached to V' and to an additive character ¢, gives rise to Eisenstein series
on GL3(A) in the following way. For g € GLy(A),s € C,p € S(V,) define the function

F(s,950) = r(91)(0)]alg)|*~* |det g| "/ *wi* (det g)

where sg = n — 1 and |a(g)| = |a/b|"/?, if g = (6 %)k, for k in the standard maximal com-
pact subgroup K of G(A). An easy computation shows that f(s,g;¢) belongs to the induced
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representation space B(|-|*/2,w™1|-|~%/2), and that f(s,g; ) is a flat section in this representation
space, that is, its restriction to the standard maximal compact subgroup of G(A) is independent
of s. The corresponding Eisenstein series is given by

E(s,g;9)= Y, [f(s,79:9).
YEB(F)\G(F)
For g € SLy(A), the Eisenstein series coincides with that for SL(2) defined in [KR88]. For a fixed g €
GL2(A) the series converges absolutely for Re(s) > 1, and has a meromorphic analytic continuation
and functional equation, provided that the function ¢ is K-finite [KR88, Bum97, ch. 3.7].

Recall the theta kernel 0(h,g; ) for (h,g) € R(A), used to define the theta correspondence.
For ¢ € G*(A) (the subgroup of G(A) of matrices whose determinant belongs to v(GO(Vy4))),
consider the integral:

Igio) = |
O(Vr)\O(Va)
where h € GO(V,) has v(h) = detg (v is the similitude factor), and the measure on the compact
group O(Vy)/O(VF) is normalized to give this group unit volume. Note that in the language of
the previous section, I(g; ) is simply the theta lift of the constant function on O(Vy). As before,
it can be shown that I(g; ) is left invariant under (G(F) N G(A)T), and therefore it extends to an
automorphic form on G(A).

O(ch,g; @) do,

The Siegel-Weil formula relates this theta lift with a special value of an Eisenstein series. It has
been proved for g € SLa(A) in [KR88|, and can be extended to similitudes by following the proof of
Theorem 4.2 in [HKO01].

THEOREM 2.4.1 (Siegel-Weil for similitude groups). Let k be 1 or 2 asn > 1 or n = 1 respectively.
Then

E(s0,9; ) = kl(g;p) for all g € G(A)T.
Recall that so = n — 1.

2.5 Special vectors in the Weil representation

Let F be a local field and let K be a quadratic extension of F' (either a field or the split algebra).
For A € F*, let rp = 7a4 be the Weil representation of attached to the vector space K with
quadratic form ANy, p(7) and to a nontrivial character ¢ of F'. Let w be the quadratic character
of F* attached to K.

The purpose of this section is twofold. First we identify Schwartz functions in S(K) that are
invariant under certain congruence subgroups of GL(2) in the nonarchimedean case, or that have
prescribed weight in the archimedean case. These Schwartz functions are later used in Proposition 4.1
to determine the level of a global automorphic form which is a theta lift of a character of a real
quadratic field.

Second, in Lemma 2.5.2 we compute the ‘Gaussian transforms’ of various nonarchimedean
Schwartz functions, which play a central role in solving the local Rankin—Selberg integrals in
§4.2. We also use Lemma 2.5.2 to determine the image of Schwartz functions under the map
© — f(s,9;0) € B(]- 572, w1 -|/27%), used to construct Eisenstein series in the previous section:

F(5,9:9) = ralg1)p(0)|a(g)|** " |det g| 71/ *wi) 1 (det ). (2.5.1)
For simplicity, denote by I(s,w) the space B(|-[*~V/2,w™1|. [/279).

2.5.1 Nonarchimedean case. Assume that F' is nonarchimedean. As before, let w = wg,/r be
the quadratic character of F* whose kernel is Ny /p(K*) and let § = @S Ok be the different of the
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extension K/F'. It is well-known that the conductor of w is C. If K is a field we fix uniformizers wy,
wp of K and F' such that wx = wp if K/F unramified and Ny, pwg = wp if K/F is ramified.
Let v and dx be the gamma-factor and the self-dual measure for the Weil representation attached
to the norm Np, r(z); as pointed out in §2.1, the corresponding quantities for the representation
attached to the norm ANy /p(z) are w(A)y and [A]dz, respectively. We assume that the character
1 appearing in the definition of the Weil representation is unramified.

For A = 1, the level of the global theta series 0, in Proposition 4.1 will be determined using the
following local computation.

ProprosITION 2.5.1. We have the following.

(i) Let 6 = w0k be the different of the extension K/F (C > 0). If ¢ = lo,., then for all
k € Ko(w$) N SLy(F) we have
ri(k)e = wi/r(k)p.
(ii) Assume that K/F is unramified, and let x be a (unitary) character of K*/F* of conductor
s> 0. If p(z) = x(2)1y, (z), then for all k € Ko(w?*) N SLy(F) we have

ri(k)e = ¢.
Proof. (i) It is enough to check the statement for a set of generators of Ky(ww%). Note that the

function ¢ = 1p, has Fourier transform @ = ;1(Og)1s-1. We have the following two cases.
Case 1. K/F unramified. The group Ko(1) N SLo(F) is generated by matrices of the type

(3 8) -8, em (),

with @ € U, b € Op. The first two matrices clearly fix ¢ = 1o, while for the third we have (y =1
in the unramified case)

ri(w)e =@ = ¢,
since v =1 and u(Ok) =1 in the unramified case.

Case 2: K/F ramified. The group Ko(w®) N SLy(F) is generated by the matrices t(a), n(b),
together with

1 0
C C
v(wpu) = <wgu 1> = —wn(—wpu)w,
for a,u € Up, b € Op. The action of the first two matrices is easily seen to satisfy the claim, while
r1[n(wbu)] fixes = u(Ok)1s-1, therefore

rifwn(~whu)wle(x) = rifwn(@gu)he(e) = v e(-z),
by the Fourier inversion formula. Since 72 = wy /r(—1), the claim follows.

(ii) As in part (i), we need to check that ¢ = x(z)1y, (x) is fixed by the generators t(a),n(b),
and v(w?u) of Ko(w?®) N SLy(F), for any a,u € Up, b € Op. For the first two, the claim follows
from the definition, while for the last we need to consider the following two cases.

Case 1: K is a field. The character i := 9 oTr of K is unramified, hence the Fourier transform
of ¢ = x1y, can be computed using Lemma 2.1.2 (here w = wp = wk):

(2) = /U X (@T) dy = [~ Y2e(x, )X (@) Loy ().

)

Since 71 [n(w?*u)] fixes @, it follows that
rifwn(~w*u)wle = rifwn(@E )] = p(-).
However, x(—1) = 1 since x is trivial on F'*, hence the conclusion follows.
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Case 2: K = F @ F. Since y is trivial on F*, there is a character n of F'* of conductor s such
that x = (n,7~!). Using again Lemma 2.1.2, we have

Blar, a2) = / n(y0)n(y) " (s + won) dys dys
UFXUF

= |@| (@1 lg—spp (@1)0(22) ™ Lgspp (x2)e(n, )e(n ™, ).

Since 71 [n(w?*u)] fixes @, the conclusion follows as in the previous case. O

The following lemma, which determines the Gaussian transform of various Schwartz functions,
plays an important role in computing local Rankin—Selberg integrals in §4.2.

LEMMA 2.5.2 (Nonarchimedean Gaussian). Let ¢ be an unramified nontrivial character of F', and
let K/F be a quadratic algebra extension of different wIC{OK.

(i) If K = F & F is split, then

/ Woay)dedy = | [ZFITivle) 2
@3 Op xwhOp a1 ifv(a) < —s—t.

(ii) If K/F is a field extension, t is an integer, and o € F'*, then

@' u(Ok)  ifv(a) > —ft,
/ YlaN(y)]dy =<0 if —ft>v(a)>-C— ft
ZrOK vl tw(e)™t ifv(a) < —C — ft,
where f is the residue class degree of the extension K/F' (that is, f =1 or 2 corresponding to
whether K is ramified or not respectively).
(i) If K/F is ramified, t € K with vg(t) = —r,0<r < C, and o € F, then

{1[)[04N(t)],u((91<) ifa € Op,

/t+(9z< VlaN )] dy = ifa ¢ O and vp(a) #1r —C.

The remaining case, o« ¢ Op and vp(a) = r—C, can occur only when the residue characteristic
of F' is 2. Assuming F' = QQ, in this case, the integral has complex norm 2(r+1-2C)

Proof. Part (i) follows easily by direct integration. To prove part (ii), first change coordinates
y = whOf to obtain (recall that wx = wp in the unramified case and N(wg) = wp in the
ramified case)

/ Y(ayy) dy = Iwzr|ft/ (awler) de.
W%OK OK

The statement of the lemma follows from Lemma 2.1.3 in the case v(a) + ft < —C, while if
v(a) + ft > 0 it is obvious. We are left with the middle case (which can only occur if the residue
characteristic of F' is 2), for which it is enough to prove that:

YPlwpzz)de =0 f0<r<C.
Ok
A change of variables z = xZ reduces the integral to
Yo 2)(1+w(z)dz = | (o 2)w(z)dz.
Or Op

To show that the last integral vanishes, it is enough to prove that the same integral over Up vanishes.
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Writing z = a + whb+ wgt, with a € Up/Up,b € (’)F/wg_r(’)p, and ¢t € O, we have

/U PY(wy 2)w(z)dz = Z Y(awy" w(a + wpb).
F a,b

Since w has conductor C, the sum over b € Op /wg_r vanishes for any a € Up, thus finishing the
proof of this case.

For part (iii), we change variables y = tx, with « € U},. Denoting the integral by I, we have
I =t Y[aN(t)N(z)] dx.
Uk
If a € Op, we further change variables z = 1 4+ w2’ to conclude I = ¥ (aN(t))u(Ok ).

Assume, therefore, o« € Op. We change variables z = N(x). If r = C, the norm maps UIC; onto
Ug, and the integral is easily seen to vanish. Assume further 0 < r < C, which can only occur if
the residue characteristic of F'is 2. The norm maps U} into U, and we have

I=1 [ waN®2)[1 +w()dz,
Up
where the measure on F' is normalized by u(Op) = u(Ok). It is easy to see that fU; Y(aN(t)z)dz

= 0, and to compute the remaining integral we change variables z = 1 + wpa + wg_Ty with
a e Op/wg_rOF, y € Op:

I =|wp|“ " p(aN(t Z 1/1 [aN(t)(wha + w&y)w(l + wha) dy.

The integral over y vanishes, unless vp(a) > r — C, which we assume. We are left to compute

I = |wp|9"h(aN(t)u(OF) ZzpaN ywhalw(l + wha),

where the sum is over a € OF/wg_T(’)F.

It is here that we assume F' = Q,. The sum over a has two or four terms, as C' —r = 1 or
C — r = 2, respectively, and it is easy to check, by examining the four possible cases for which
3>2C>r>0and0 > vp(e) > r— C, that the sum vanishes unless v(a) = r — C, when its
absolute value is 2(¢~7+1)/2_ Using the fact that u(Op) = |wp|®/? and |wr| = 1/2, we obtain that
the (complex) absolute value of I is 2(r+1-2C)/2 Ttg exact value depends on the character 1, but it
will not be needed in the sequel. ]

The previous lemma allows us to determine the image of the map ¢ € S(K) — f(s,g;¢) € I(s,w)
given by (2.5.1), for suitable functions ¢. The function f(s, g; ) is determined by its restrictions to
Ky(1), which is independent of s, hence it is enough to compute the values f(k;¢) := f(s,k;¢) =
ra(k1)p(0)wt(det k), for k € Ko(1).

PROPOSITION 2.5.3. Let k = (25) € Ko(1).
(i) Assume that K/F is unramified (split or not), and that vp(A) = M > 0. If ¢ = 1o, then

Fks o) = {w(d)_l =1 if k € Ko(w),

|Ac™t|rw(Ac™1)  otherwise.
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(ii) Assume that K/F is ramified with different § = w$ O, and that v;(A) = M > 0. If ¢ =
].w;{MOK, then

w(d)! if k € Ko(w%),
flk;p)=<%0 if C > vp(c) >0
lwp| M (O )y|Alw(—Ac™Y)  ifc e Up.
The middle case occurs when C' > 2, which can only happen if the residue characteristic of I
is 2.
(iii) Assume that K/F is split and v(A) = M > 0. If ¢ = 1OF><W;AIOF, then f(k;p) =1 for all
ke Ko(1).
Proof. Since f(g;p) € B(|-[*"1/2, w1 -|/27%), it is enough to check the claim for k € Ky(1) N
SLo(F).
If ¢ = 0, by the definition of the Weil representation we have

i (f o) el = wl@lalu(antato)sten)

and it follows that f(k;¢) = w(a)e(0) = w(a) as desired.
If ¢ # 0, the conclusion follows from formula (2.1.1) together with the previous lemma. O

2.5.2 Archimedean case. Assume now that F = R, and fix the character i(z) = e*™®,
For future applications, we only need to consider the case when the extension K/F is split, that is
K = R2. We are interested in functions F(s, g; ) € I(s,w) given by (2.5.1) of arbitrary even weight
under the action of r5. Equivalently, it is enough to find Schwartz functions ¢y of weight —2k under
the action of 7y, for each integer k. We assume here that A > 0.

The basic computational tool for the action of the orthogonal group is the following.

LEMMA 2.5.4. Let A € C with Re(\) > 0. Then

/ y2ne—7r)\y2 dy — (2%)' . 1 )
R (4m)mnl - Any/X
Proof. The case n = 0 is the well-known Gaussian integral, and the general case follows by induction,
using integration by parts. ]

Now, let kg = (%59 58) € SO,(R).

sin @ cos 6

PROPOSITION 2.5.5. For each integer k > 0, let o5, € S(R?) be given by o (x1,72) = Py(x1 — x2)
e~™A@i+23) where Py, is the polynomial:

k
= J

ra(ko)pr(z) = e My (2).

Proof. Note that the map ¢(x1,29) — ¢(v/Axy,vV/Axs) provides an isomorphism between the Weil
representations r; and rj. Therefore, we can assume without loss of generality that A = 1.

Then

We are looking for a polynomial P(z1,z2) of degree 2k such that
r1(kg)p(0) = e "% where p(x1, 22) = e "D Pz, 25).

824

https://doi.org/10.1112/50010437X06002259 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002259

CENTRAL VALUES OF RANKIN L-SERIES

Let a = cosf,c = —sin . Then formula (2.1.1) gives
r1(kg)p(0) = |c_1| e_’r(ﬁ”%)P(ml, mg)e%‘m_lwlw2 dxq dzs.
R2
We change variables 1 = y; + y2, 22 = y1 — y2. Denoting by Q(y1,y2) the polynomial P(y; + yo,
Y1 — y2), we have

rilke)p(0) = 20c | [ e Al D2 mi Dy, o) dy, dys.
R2
We shall look for a polynomial of the shape

k
Q(y17 y2) = Z any%nv
n=0

where a,, are to be determined. The integral is then easy to compute using Lemma 2.5.4:

k
r1(ke)p(0) = Zan%(l +ia/c) "
n=0 :

Note that (1 4 ia/c)™' = isinfe™", and that the following identity holds:
k

e M0 =N "(—2isin fe )" <k> (2.5.2)

n
n=0

It follows that rq(kg)p(0) = e~2¥_if q,, satisfies

o fieg = ()

With these values, the polynomial P(x1,x2) = Q[(y1 + y2)/2, (y1 — y2)/2] is seen to satisfy
P(z1,29) = Py(z1 — 22)

where Py is the polynomial defined in the statement of the proposition.

It remains to check that rq(k)p(z) = e 2k p(z) for all values of x € R?, which can be done by
direct computation using Lemma 2.5.4 and identity (2.5.2). O

Remark 2.5.6. A more conceptual proof would consist of defining Pj as the result of applying k
times the lowering operator L to Py, where L is a certain matrix in the complexification of the Lie
algebra of SLo(R). However, the action of the lowering operator seems to be harder to compute
than the direct method presented here.

The polynomials Py have a very simple Gaussian transform, which we state here for later use.

PROPOSITION 2.5.7. If A € C with Re(\) > 0, then

/RPk(a;)e_”)‘IQ dx = % (1 - %)k

Proof. The identity follows from the binomial formula, using Lemma 2.5.4. U

3. Local L-function theory and Whittaker newforms

Let I’ be a local field, and let v be a fixed, nontrivial, additive character of F. Let m be an
admissible, irreducible, infinite-dimensional representation of G(F') = GLa(F), and let K be the
standard maximal compact subgroup of G. We recall that any such m admits a Whittaker model,
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in which G(F) acts by right translation on a space W (m,) of smooth! and K-finite functions W
on G(F') satisfying

W <<(1) Qf) g> = (2)W(g) forallz e F.

For the construction of the space W (m, 1), we refer the reader to [God70] or to [Bum97|. For any
W e W(m, ), define the ‘Mellin transform’:

Uiy (s,g) = /F W <<g ‘f) g> 12 45 (3.0.1)

where d*z is the invariant measure on F'* such that the set of units in F' has measure 1 in the
nonarchimedean case, and the multiplicative Lebesgue measure on R* or C* if F =R or F = C,
respectively. The L-function L(s, ) is defined as the greatest common denominator of all Wy (s, g),
appropriately normalized. Our choice of exponent s — 1/2 in formula (3.0.1) guarantees that the
Mellin transforms above have a functional equation for s — 1 — s.

In this section, we review the theory of Whittaker newforms, which are elements W, € W (m, )
such that

Uy, (s,e) = L(s,m), (3.0.2)

where e is the unit matrix in G(F'). Such elements are not unique, but there are natural choices
that we review below.

3.1 The nonarchimedean case

Assume now that F' is a nonarchimedean field and that the nontrivial character 1 used to define
the Whittaker model is unramified.

Following Casselman [Cas73|, we define the conductor of m as the smallest integer C' > 0
such that there is a nonzero function W € W (mr,v) that is invariant under K;(w%). Casselman
has shown that the space of K; (wg)—invariant functions in W(m, 1) is one-dimensional, and we
define the Whittaker newform as the function in this space that takes the value 1 at the identity
(that this is possible follows from [Cas73]). It is an easy check that W satisfies the identity (3.0.2).

The following proposition can be used to determine the values of W;. Part (i) is well-known,
while for part (ii) see [ZhaOl].

ProOPOSITION 3.1.1. Let C' > 0 be the conductor of m and W, the Whittaker newform.

i) Let ay,a9 € C be such that L(s,m) = 1 — o|wp|®) L. Then we have
(i) 1,2

a 0
Ww< = 9 |a|'/? Z ool otherwise,

k+l=v(a)

0 if la] > 1,
i)

with the convention that 0° = 1, in case o or as is 0.

(ii) Let e(m, 1) be the epsilon factor attached to m and let W be the Whittaker newform for the
contragredient representation . Then

Wr(gh) = Wx(g)w(det g)e(m, 1),

where h = (_gg (1)) is the Atkin-Lehner operator of level w.

'If F is nonarchimedean, smooth means locally constant.
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3.2 The archimedean case

Consider now the case F' = R (the case ' = C is not needed in this paper and it is treated in
[Pop04]). We fix the character 1 (z) = €™, and denote by K = O3(R) the maximal compact
subgroup of GLy(R). Let 7 be an admissible, irreducible, infinite-dimensional representation of
GL2(R), that is a (g, K)-module, where g is the complexification of the Lie algebra of GLa(R).
See [Bum97, p. 200] for a definition of (g, K )-modules.

Since it will be often used, we recall the formula for the L-function L(s, 7). It is defined as follows
in terms of the gamma factors:

Gi(s) = /2T (g) L Ga(s) = 2(2m)°T(s) = G1(s)G1 (s + 1).
If 7 is a principal series representation 7(u1, u2) of G(R) with u; = |- ["sgn™, r; € C,m; € {0,1},

then
L(s,m) = H Gi(s +1i +my).
i=1,2
On the other hand, if 7 is a discrete series representation o (1, o), we can assume without loss of
generality that pp = |- |%, 2 = |-|*2sgn™2, with s; — so = S a positive integer, ms € {0,1}, and
S — mo odd. Then
L(s,m) = Ga(s+ s1).

The notion of level in the nonarchimedean case is replaced by that of weight in the archimedean
case. A Whittaker element W € W(m, 1)) is said to have weight m if

) € SOz (R).

cosfl sinf

Wigho) = ™W(g) for ko = (0

The weight of 7 is the smallest nonnegative integer n such that W(m, 1) contains a nontrivial
vector of weight n. If 7 is a principal series representation with central character u(t) = |t|"sgn(t)™
with m € {0,1}, then the weight of 7 is m; if 7 is a discrete series representation o(u1, pe) with
,ul,ugl(t) = {Psgnt for some integer p > 0, then the weight of 7 is p + 1.

We are now ready to identify Whittaker newforms in the real case. These statements are well-
known, and for proofs we refer to [Pop04].

ProprosITION 3.2.1. We have the following.

(i) If 7 is an admissible, irreducible representation of G(R) of weight k, which is not of the form
(|- |"sgn, |- |"?sgn), then there is a Whittaker function W, € W (m,v) of weight k such that
\IIWW(S? 6) = L(Sv 7T)'

(ii) If 7 is the weight O representation 7(|-|™sgn,|-|"2sgn), then there is a Whittaker function
W e W(m, 1) of weight 2 such that Wy (s,e) = L(s, ).

We call the function W of Proposition 3.2.1 a Whittaker newform for the representation m,
in case 7 is not of the form =(|-|"sgn,|-|™sgn). In the latter case, following [Zha0l], we call
Whittaker newform the weight 0 function W, such that Wi (g)sgn(detg) is a newform for the
representation 7 ®sgn = (|- |, |- ["?). Even though ¥y, (s,e) = 0 in this case, it will be important
for the next section that the newform W, have the same weight as the representation .

We also need to know the values of W, on the diagonal torus, for which we refer to [Pop04] and
[ZhaO1].

PropoSITION 3.2.2. Let W, be the Whittaker newform defined above. Then W, is completely

1/2
determined by the function f(t) = VVW(‘t| Osgnt ‘tlgl/g
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e If 7 is discrete of weight k, then

2tk/2¢=2mtif t > 0,
f=(t) = .
0 ift <0.
e [fr is the weight-zero principal series 7(| - |"tsgn™, |- ["2sgn™) with m € {0, 1}, and r = r; — 9,
then
(=)™ fr(=t) = frlt) = 262, jp(2mt)  fort >0,

where J, /5 is the Bessel function defined below.

For each complex number u, the Bessel function J, = J_,, is a solution of the following differential
equation:

J! 2
J5<y>+# _ (1+%> July) =0 fory>0.

It can be shown that (up to a constant) this equation admits a unique solution of moderate growth
at infinity. If normalized appropriately, this solution satisfies the following identities, which will be
often used:

/ e VT <t = 2.7, (2y), (3.2.1)
0

/OOO Ju(y)ysdxy:28_2F<8;U>F<8;u>, (3.2.2)

where y > 0 in the first equation and Re s > |Re u/| in the second.

4. The Rankin—Selberg method

We start by outlining the classical Rankin—Selberg method, as in [Ja72] and [ZhaOl], and then
describe a version that is suitable for our goals.

Recall the global setting considered in the introduction. Let 7y be the cuspidal automorphic
representation of G(A), associated with a newform f of even weight 2k, and trivial nebentypus for
Io(N) over Q. Let K be a real quadratic field of discriminant dg, let x be a character of Ay /K*A*
of conductor ¢(x) € Z, and let 1, be the associated representation of G(A), whose local components
are described in Theorem 2.2.1. The representation m, has conductor D := drcc(x)?, weight 0 at
infinity, and central character w = wg, the quadratic character of A*/Q* attached to K by class
field theory.

In this paper we assume that N,dg,c(x) are pairwise coprime, and that N is square free.
The later assumption implies that the local components of 7y, at the primes dividing N are dis-
crete series representations o (1| - |*/2,n,|-|71/?) with 5, unramified. When 7; has weight 0, its
archimedean component is a principal series 7(u, p~1), and we also assume that p(—1) = Yoo 1(—1)
where Xoo,1 is one of the archimedean components of x (the other being X;ol,1)-

The Rankin L-series L(s,m x ) satisfies a functional equation:
L(s,mp x my) =€(s,mp x my)L(1 = s,mp X Ty).

Moreover, we have €(1/2, m¢ x ) = ag(—N), independent of x, where a is the Dirichlet character
of (Z/dxZ)* attached to the quadratic field K. In this paper we study the case when ax(—N) = 1,
so that the sign of the functional equation is +1. Recalling that ax(—1) = 1 (since K is real
quadratic) and that N is square free, this assumption means that the number of primes dividing N
which are inert in K is even.
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Let W (m¢,4p), W(my,1) be the Whittaker models of ¢, m, with respect to the unramified
character ¢ of A/Q having infinity component ¥ (z) = €**. The Rankin-Selberg method for
studying the L-function L(s, 7 x m,), developed in general by Jacquet [Ja72], can be summarized
as follows:

L(s,mf x my) = / We(g)Wy(eg)f(s,9)dg

Z(A)N(ANG(A) (4.0.1)

/ 61(9)6x (9)E s, 9) dg.
Z(A)G(Q\G(A)

In the first integral, the Whittaker functions Wy € W (m¢,4), W, € W (m,, 1) are pure tensors whose
local components are Whittaker newforms, and the section f(s,g) is a suitably chosen pure tensor
belonging to the induced representation space I(s,w) := B(|-|*7Y/2,wi!| - |/27%) (see [Zha01] for
the construction of f(s,g) in the case K is imaginary quadratic). The first identity can be proved
locally, using the definition of L(s, 7 x my) as an Euler product, and the properties of Whittaker
newforms.

The second integral, the adelic version of the Petersson inner product, is obtained from the first
by the folding process characteristic of the Rankin—Selberg method. Here ¢y, ¢, are the automorphic
forms in the space of 7, m, whose Whittaker coefficients are Wy, W, , respectively, and E(s,g) is
the Eisenstein series:

E(37g) = Z f(S,’yg).
YEB(Q\G(Q)
The functional equation and analytic continuation of L(s, 7 x 7, ) then follow from the correspond-
ing properties of the Eisenstein series, via the integral representation (4.0.1).

Our goal in this section is to prove a version of the Rankin—Selberg identity (4.0.1) in which the
form ¢, (g) is replaced by a theta lift 6, (g; 1) of the character x via the Weil representation attached
to the quadratic space (K,Ng/g) as in §2.3, and the section f(s,g) is replaced by the section
f(s,9;p2) constructed using the Weil representation attached to the quadratic space (K, ANk /q),
as in §2.4. The Schwartz functions ¢, € S(K,) will be chosen later, and A € Z is a constant
chosen so that the quaternion algebra B ramified at the primes dividing N which are inert in K
has global Hilbert symbol (dx, —A). Since 6, is defined as an integral only on G(A)™, the subgroup
of matrices with determinant belonging to N(A}%), it is not surprising that the following version of
the Ranking-Selberg identity holds over G(A)™:

L(s, 7y X my) = M(S)/ Wi(g)Wy(eg; 1) f (s, g;02) dg
Z()NA\G(A)* (4.0.2)

= M(s / b1(9)0x(g; 1) E(s, g; 92) dg,
Z(A)G(QT\G(A)*

where W, (g;¢1) is the Whittaker coefficient of 6, (g;1). The factor M(s) is a product of local
terms that will be computed while proving the first identity above.

This section is devoted to proving this identity and it is organized as follows. In §4.1, we study
the properties of the theta lift 6,(g;¢1), in particular we compute its level and its Whittaker
coefficients for a suitable choice of ;. Using this information, the proof of the first identity in
(4.0.2) is done in §4.2, which is entirely local. The second identity then follows just like the classical
Rankin—Selberg identity, leading to Proposition 4.3.1, the main result of this section.

4.1 Theta series

In this section, we view K as a quadratic space over Q with quadratic form ¢ = N g, and
the character x as an automorphic form on the adelic points of the special similitude group
GSO(K) = K*. We analyze the theta lift 0,(g; ) defined in §2.3, and we show that for a
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suitable choice of Schwartz function ¢, the Whittaker coefficient of 6, (g;¢) decomposes as a prod-
uct of Whittaker newforms for the local factors of the automorphic representation ,, for most
g € G(A)*. For most of this section, we let y be an arbitrary Hecke character of K, while for
Proposition 4.1.3 we assume that x is trivial on A*.

We start by recalling the construction of 6, , since it is slightly different from that in § 2.3. Denote
by K! the group of elements of K of norm 1, identified with the special similitude group SO(K).
We denote by N the norm in the field extension K/Q, as well as in the local and adelic exten-
sions. We also denote by G(Q)™, G(Q,)", G(A)T the subgroup of the corresponding linear groups
consisting of matrices with determinants belonging to N(K*), N(K ) and N(AJ), respectively.

Let » : R(A) — Aut S(K4) be the Weil representation extended to the subgroup R(A) of
GO(Kp) x GLy(A) consisting of pairs (h,g) with g(h) = detg (see §2.3), and define the theta
kernel:

0(h,gi0) = Y r(h,g)e(x) for (h,g) € R(A),
reK
depending on a choice of Schwartz function ¢ € S(Ky). Let 0,(g; ¢) be the theta lift of the ‘auto-
morphic form’ x on GSO(K)/GSO(K) = K /K*:

0\ (g:¢) == 0(ch, g;¢)x(oh) do, (4.1.1)

/SO(K)\SO(KA)
where h is any element in GSO(Ky) with g(h) = detg. Note that the integral is taken over the
compact group K 1\K11§> hence it converges absolutely. The integral is independent of h and it
defines a function on G(A)™, left invariant under G(Q)". We extend it to G(Q)G(A)™, an index
two subgroup of G(A), by left invariance under G(Q).

We normalize the measure on K}% = SO(Ky) by requiring that the compact sets K; NUk,p have
measure one if p is nonarchimedean, and on KL ~ R* we use the multiplicative Lebesgue measure
dx/x. This measure normalization is compatible with the Hilbert exact sequence:

1= A" =AY - Kf — 1,

where the measures on A* and Aj; are the restricted product measures for which the units have
measure 1 at all primes p, and the multiplicative Lebesgue measure at infinity. We can then compute
the total measure of K'\K} ~ A*K*\A% using the decomposition

AK\AR/Ox ~ | | a-éi\KL (4.1.2)
UGHK

where a runs through a set of finite idele representatives of the narrow class group Hg, e%{ denotes
the group generated by the smallest totally positive power €k of the fundamental unit (ex is either
the fundamental unit or its square), and K1 = {(t,t7!) € Ko : t > 0}. It follows that the total
measure of SO(K)\SO(Ky) is equal to hi Ineg, with h the cardinality of Hy.

Remark 4.1.1. The definition of 0, given here differs from that in §2.3, where the domain of
integration in (4.1.1) is the entire orthogonal group O(K)\O(Ky), and the character x is replaced
by an automorphic form Y on GO(K)\GO(Ky) belonging to the representation space of II()
(see Theorem 2.3.3 and the paragraph preceding it for the notation). This difference is responsible
for not being able to identify the Whittaker coefficients of our ¢, with Whittaker newforms in
the representation space of my, and for the slightly awkward statement of Proposition 4.1.3(ii).
We consider the less general theta series 6, defined above in order to avoid complications due to
considering forms x and integrating over the orthogonal group, and since they are sufficient for our
purposes. See also Remark 5.2.1 for a comparison between the two theta integrals for y = 1.
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Next we compute the Whittaker coefficient of 6, (g; ¢) under the assumption that ¢ € S(Ky) is
a pure tensor.

PROPOSITION 4.1.2. Assume that the Schwartz function ¢ used to define the theta lift is a pure
tensor ¢ = [[, pv, and let W, (g; ) be the Whittaker coefficient of 0,(g; ¢).

(i) For g € G(A)", the Whittaker function W, (g; ¢) decomposes into a product of local Whittaker
functions on G(Q,)" given by

Wyo(gos o) = /Kl L(ho)r(gu)eo(0 ") xw(ohy) do, (4.1.3)

v

where h, € K, is such that N(h,) = det g,.
(ii) For ¢ € Q*, g € G(A)*, we have

0 ;
w (5 ) se) =0 ire ¢ o),
Proof. (i) We compute the Whittaker coefficient of 6,:
Wilgi o) = / O (n(x)g; p)ip(—) da,
Q\A

where n(z) € N(A) is the unipotent matrix with upper right entry equal to z. Assuming g € G(A)™
we have (after switching the order of integration)

Wilgio) = [ - /Q  Hohn(@)g: pIp(—)x(oh) dedo (4.1.4)

where h € Ay with N q(h) = det g.
The inner integral is seen to be

O(ch,n(x)g; —z)dr =
/@\A< (2)g; )(—)dz = 3

teK

=Y L)r(g)e(o ).

teK!

/ L(h)r(g1) (o~ tyilaa(t) — x) de
Q\A

For the first equality we have used Lemma 2.3.1 together with the fact that the Weil representation
for SLy(A) commutes with the action of the orthogonal group SO(K). Now the integral in (4.1.4)
collapses with the summation, and we obtain:

W) = [ | Lhjrlg)e(e x(on) do

1
KA

This proves that W, (g;¢) is a product of the local Whittaker functions from (4.1.3).
(ii) Assume £ € Q*, g € G(A)T. Then (see the notation for i(x)):

W@l = [ 0GEmE D)) o
Using the fact that 60, is left G(Q)-invariant we obtain, as before,
Wi = [ Ooh,n(€ 2)g; eW(—)x(oh) di do,
KN\KL JQ\A
where h € A with N g(h) = det g. The inner integral is now

> /@\AL(’l)r(m>so<a-1t>¢<xs-1q<t> — ) d,

teK

and we see that all of the terms of this series vanish if { ¢ N o(K ™), which proves part (ii). O
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Let W, be the Whittaker newform for the global representation =, that is the pure tensor
in the Whittaker model W (my, ) whose local component at a place v is the Whittaker newform
for 7y ,. The next proposition shows that, for an appropriate ¢ € S(Ky ), the Whittaker coefficient
Wy (g,¢) of 0,(g, ) is almost equal to the Whittaker newform W, (g), for g € G(A)T. Recall that
D = dgc(x)? is the conductor of .

PROPOSITION 4.1.3. Assume that the unitary Hecke character x is trivial on A*, and that its
conductor is coprime to di. Let ¢ € S(Kp) be the function whose local components are

loy, (2) if X is unramified,
ep(x) = § Xp(x) vy, () if Xp is ramified,
e—ﬂ'(I%"rI%) lfp = 00,

where 14 denotes the characteristic function of the set A.
(i) For k € Ko(D)t := Ko(D) N G(A)t and g € G(A)" we have
Ox(gk; @) = wi (k)0x(g; ©), (4.1.5)

and, moreover, 6, has weight 0 at the archimedean place.

(ii) For all primes p{ D (including p = 00), and for g € G(Q,)™", the local component W, ,(g; ¢p)
given by Proposition 4.1.2 is equal to the Whittaker newform W, ,(g). If p|D, then
Wip(ts gp) = Wyp(t) for t € Ti(Qp) ™.

Proof. (i) To show that the automorphic form 6, (g; ) has level Ko(D)™, first let k € Ko(D) N
SLa(A). We need to show that
Oy (gk; p) = wic (K)0x(g; ©),

hence, it is enough to show that the theta kernel has the same invariance property. This boils down
to showing that

r(k)e(x) = wic (ke (@),
which follows from Lemma 2.5.1 (note that the places where x ramifies are unramified in the
extension K/F).

Take now 6(a) = (}9) € Ko(D)*, with a = N(a) for some a € A}. By definition we have

Oy (gé(a);p) = 0(aho, go(a); ) x(aho) do,

/SO(K)\SO(KA)
for all g € G(A)T and h € K, with v(h) = detg. Using Lemma 2.3.1, we can compute the theta
kernel as follows:

0(aha, gé(a); ) = Y L(aho)r(5(a) " g16(a))p(x)
zeK

=Y L(ho)r(g)p(a™'a).

zeK
Since « is a unit at all finite local places, we have ¢(a~!z) = x(a !)¢(x), which shows that
0(aha,gd(a); ) = 0(ho, g; p)x ().
Coming back to the theta integral, it follows that 6, (gd(a); ¢) = 0, (g; ¢), which proves (4.1.5).

At the archimedean place, it is easy to see that 6, has weight 0, that is 6 (gke; ¢) = 0, (g; ¢) for
kg € SO2(R). Indeed, the theta kernel is invariant under the action of SO2(R) by Proposition 2.5.5.

(ii) By Proposition 4.1.2, the Whittaker coefficient W, (g; ¢) decomposes into a product of local
Whittaker functions for g € G(A)™. For primes p { D and for p = oo, part (i) implies that W, ,,(g; ¢)
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is invariant under the maximal compact subgroup Ko(1),, or under SO2(R) for p = oo, hence it is
completely determined by its restriction to the diagonal torus 71 (Q,)". We are reduced to computing
these diagonal values at all places.

Recall that the values of the Whittaker newforms W, , on T7(Q,) have been computed in
Proposition 3.1.1 for p a finite prime, and in Proposition 3.2.2 for p = cc. On the other hand, for
a = N(h) formula (4.1.3) gives

W@ =1l | aylar™h)x(oh) do (4.1.6)

p
For p a finite prime, we only need to consider the case a € Z,, since the right invariance of W, ,(-; ¢)
under Ko(D),; shows that W, ,[i(a); ¢] vanishes if |a[, > 1. For simplicity, we denote by O, the
ring of integers in .

There are four cases to consider, as detailed below.

e p = pp’ splits in K. Then K, = Q, +Q,, and x, = (xp, Xp') With xp, xp characters of Q; such
that xpxy = 1. Taking h = (1,a) in the integral (4.1.6), we have

Wy pli(a); pp) = |a|1!1,/2 /QX gpp(aa:,x_l)xp(x_l)xp/(aac) d*z. (4.1.7)

If xp, xp are unramified and ¢, is the characteristic function of Z, x Z,, then we have

vp(a)
WoepliCa)i ep] = lal'" 3 xp(p) i (p)1 7"
=0

On the other hand, if xy, X} are ramified and ¢, = xp 1y ,, the integral (4.1.7) vanishes unless
a € Z,, when it is equal to 1. In both cases, it agrees with the values of the Whittaker newform
for my p = T(Xp, Xp')-

e pisinert in K. Let a = p**u with u € Zy,k=>0,and h = pFu with o' € O, N(u') = u. If the

character x; is unramified, then it must be trivial since it is trivial on Q, and for ¢, = 10,
the integral in (4.1.6) is equal to 1. This agrees with the Whittaker newform for , ,, which
is the principal series m(1,wgk p).
On the other hand, if x; is ramified and ¢, = Xpluy,, the integral (4.1.6) vanishes unless
a € Zy, when it is equal to x,(a) = 1. It agrees, therefore, with the Whittaker newform
for m, ,, which is either supercuspidal, or of the type 7(n,nwk p) if x = no N, for a ramified
character n of Q.

e p is ramified in K. Let a = pFu with u € Zy,k=>0,and h = pFu/ with N(h) = a. Since ¢ is
the characteristic function of O, we have

Wy pli(a); op) = la|'/? / ) Xp (p") do.

P

The character x is unramified, hence x = no N, for 7 an unramified character of Q;, hence
this formula agrees with the values of the Whittaker newform for m(n, nwg ;).

e p = oo. Let x; = |-|"sgn™ be the first component of xo, with » € C and m € {0,1}.
Taking h = (1,a) and o = (t,t7!) € K1 in formula (4.1.6), we obtain

. —7ra2 —2442 r —r m
Wyoelit@) poc) = laf! [ e 2ol sguia)™ 0"t

The expression on the right-hand side is even or odd as a function of a as m = 0 or
m = 1, respectively, in agreement with the formula for W, ., given in Proposition 3.2.2.
833

https://doi.org/10.1112/50010437X06002259 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002259

A. A. Popra

Moreover, for a > 0 we obtain, after a change of variables t? = au,

[e.9]

Wy.ooli(a); poo] = a1/2/ ety Xy = 202 J,(2ma).
0

In the last equality we have used formula (3.2.1). Comparison with Proposition 3.2.2 shows

that the local Whittaker functions agree in this case as well, which finishes the proof. O

4.2 Local Rankin—Selberg convolutions

Let F be a local field, and 71,79 be two admissible, irreducible representations of G(F') = GLy(F)
of central characters wy,ws. Let w = wyws, and fix as usually a nontrivial additive character v of F’
(which is unramified in the nonarchimedean case). The convolution L-function L(s,m; X mg) is
defined as the common denominator (appropriately normalized) of the following local Rankin—
Selberg integrals:

(s, W1, Wa, f) = / Wi (g)Wa(eq)f (s, 9) dg
Z(F)N(F)\G(F)

where W; € W(m;, 1), e = i(—1) € G(F), and f(s,g) is a function in the induced representation
space I(s,w) := B(|-|*"%2,w™!|-['/27%). Given our choice of exponents, the Rankin-Selberg inte-
gral satisfies a functional equation for s — 1—s. See [Zha0l] for a concise account. When one of the
representations my, my is a principal series, the convolution L-function can be computed as follows:

L(s,m x m2) = L(s, 11 @ m2)L(s, p2 @ m2) if w1 = m(p, pio).

In this section we specialize 71 and 73 to the local factors of the global representations 7 and
respectively. We consider a modified version of the Rankin—Selberg integral, in which W7 is always
taken to be a Whittaker newform for 7y, while W5 and f € I(s,w) are constructed via the Weil
representation from Schwartz functions ¢1, s € S(K) respectively, with K a quadratic separable
extension of F. We show that L(s,m X m2) equals the modified Rankin—Selberg integral up to an
explicit factor, for a suitable choice of 1, o.

Let 7 be an admissible, irreducible representation of G(F') with trivial central character, which
is to be thought of as a local component of the global representation 7. Let K/F be a quadratic
separable extension with norm N = Ny /g, and let x be a character of K*, trivial on F*. Let m,
be the irreducible representation associated to x as in Theorem 2.2.1, which has central character w,
the quadratic character of F* determined by K. Fix also a constant A € F*, and let 71,75 be the
Weil representations associated with the quadratic spaces (K, Ng /) and (K, ANg/r), respectively.
We denote by G(F)" the index two subgroup of G(F') consisting of matrices with determinant in
N(K*), and for any subgroup H of G(F') we let H" = HNG(F)™.

Fix a nontrivial character 1 of F, and let W (7, 1) be the corresponding Whittaker model of .
Let W™ (7, 1) be the set of functions on G(F)™ of the type

Wiloio) = [ Lbronele x(ah) do

for p € S(K) and h € K with N(h) = det g. This is the local component of the Whittaker coefficient
of the global form 6, (g, ) considered in §4.1, and the space W (my, 1) is closely related to the
Whittaker model of m,. We will not be concerned, however, with the exact relationship between
the two spaces.

We shall only consider sections f(s,g;¢) € I(s,wg) constructed using the representation 5 as
in §2.4.1:

F(s,9:0) = a(91)9(0)|a(g)|** ! |det g| "/ *w(det g),
for ¢ € S(K).
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The local Rankin—Selberg integral that we consider here depends on a choice of two Schwartz
functions 1, p2 € S(K) as follows:

(s ) = [ Wo(e)Wi(g: 1) f (5,95 ¢2) dg (42,1
Z(F)N(F\G(F)*+

where W, is the Whittaker newform for m. We shall show that under certain restrictions on the

data w, K/F, x, A, the local Rankin—Selberg integral exactly equals L(s,7 x my) up to a simple

factor, for a suitable choice of Schwartz functions. The restrictions are exactly the ones imposed at

the local places in the global situation.

4.2.1 Nonarchimedean case. Let F be a nonarchimedean local field, and assume that the char-

acter ¢ is unramified. Let ¢ = |wwp|~! be the cardinality of the residue field of F.

1

If 71, 9 are two arbitrary representations of G(F) such that L(s,m) =[]~ (1 — ayg—*)~" and

L(s,m) = H?zl(l — Biq—%)~1, the convolution L-function can be computed as follows:

2

L(s,m X mp) = H (1— Oéz‘ﬁjq_s)_l,

i,j=1
provided at least one of 71,79 is a principal series representation. If that is the case, the following
lemma is used in computing the local Rankin—Selberg integrals.

LEMMA 4.2.1. Assuming that at least one of mw,mo Is a principal series representation, let W; be
the Whittaker newform for m;, 1 = 1,2. If the measure on F* is such that Ur has measure 1, then
L(s,m x m3)

Wili(@)]Weli(=a)llal*~"d*a = {  L(2s,w)
L(s,m x my) otherwise.

if w1, M9 unramified,

FX

Proof. This is a routine computation using the formulae for the diagonal values of the Whittaker
newforms given in Proposition 3.1.1, together with a power series identity. U

We now specialize w1, w9 to the setting considered in §4.2. Our data consist of: a representation
7 with trivial central character; a quadratic, separable extension K/F with discriminant dx and
quadratic character w = wg; a character y of K trivial on F* with Jacquet-Langlands lift m;
and an element A € F*. If ¢(x) = S > 0 denotes the conductor of x, recall that m, has conductor
C + 2S5, where C' > 0 is the exponent of dx (and also the conductor of w).

The modified Rankin—Selberg integral in this case can be written:
V(s = [ WMLk ) £ 8 )1 dk (1.2.2)
N(K>) JKo(1)+
where f(k;p) := f(s,k;¢) is independent of s for k& € Ky(1). We normalize the measure dg on
Z(F)N(F)\G(F)" in formula (4.2.1) as follows
dg = |t|td*tdk

for the decomposition G(F)" = Z(F)N(F)T1(F)"Ky(1)*, where d*a is the measure on F* such
that N(Uk) has measure 1, and dk is a measure on Ky(1)T of total measure 1. Note that this
measures give both Ky(1) and Up volume 1, except when K/F is ramified, when they both have
volume 2.

In view of the global case, it is enough to consider the following restriction on our data.

ASSUMPTION 4.2.2. At most one of the representation m, the extension K/F, and the character x
is ramified, and m is either unramified or special with unramified twist.
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TABLE 1. Data used to compute ¥ (s, o1, ¢9).

Case T K/F X vr(A) ¢ ©2 Global
Al Unramified Unramified Unramified 0 log log ptAdg
A1l"  Unramified Split Unramified 1 lox  lopx1 -1, P=A
A2 Ramified  Unramified Unramified 1 logk logk p| N
A3 Unramified  Ramified  Unramified 0 oY 03 pldx
A4 Unramified Unramified  Ramified 2S5 xlyg log ple(x)

If K/F is ramified, we further assume that A € Upr and —A = N(u) for some fixed u € Uk;
for each a € 5;{1/ Ok, we define the functions

o o
Y1 = 1o¢+OK7 Yo = ]-au—l-l—OK'

Under the previous assumptions, we collect in Table 1 the data that will be used to compute
Ut(s,p1,p2). For future reference, in the last column we have included the primes p in the global
case that correspond to a given local case. To state the next proposition in a more compact manner,
we also define the integer M to be the largest of the conductors of = and m,. Thus, the integer M
is equal to 0 in the cases A1, Al’; 1 in case A2; C in case A3; and 25 in case A4.

PROPOSITION 4.2.3. In each of the cases above, we have
\Ij+(87 @1, 902) = M(S)_IL(S, ™ X 7TX)
where the factor M (s) is given by:

o Al AT,
M(s) = L(2s,w);
o A2 A4,
L(1,w)
M(s) = ———r7
plEo(mp )]
o A3,
L(1,w) 2 ifvp(a) =-C,
M(s) = Py Ewi . P
2u[Ko(mg )] |1 ifa€ Ok, orif F=Qy and —C < vp(a) < —1.

Here p[Ko(m¥) ] = 1/(¢™ + ¢™~1) is the measure of the compact subgroup Ko(m¥ )", for M > 1.

Proof. In the cases when m, is unramified (that is, A1, A1’, A2), it has been shown in the proof of
Proposition 4.1.5 that W, (g; 1) = Wy (g) for g € G(F)", where W, is the Whittaker newform for
my. The proof in these cases is therefore simpler than in the remaining cases, which require a direct
computation of W, (g; ¢1).

Cases A1 and A1'. We can apply Proposition 2.5.3(i) (in the case A1) or 2.5.3(iii) (in the case
Al’) to conclude that f(k;p2) = 1 for all k € Ky(1). Since Wy, W, are both invariant under
Ko(1)t = Ko(1), and W, [i(t)] =0 if t ¢ N(K*) (if K/F is a field), Lemma 4.2.1 applied to (4.2.2)
implies that
L(s,m x my)

\Ij+(87§017902) = L(ZS w)

Case A2. The representation 7 is the special series o(| - |'/2, 7| - |~'/?), with i unramified, hence
the Whittaker newform is right invariant under Ko(wp). Since v(A) = 1, Proposition 2.5.3 implies
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that the function f(k;p9) is also right invariant under Ky(wp), and formula (4.2.2) becomes
Vo) —allo(@r)] Y [ WCOWL O G el  d
geKo(1)/Ko(wp) * NE™)

As system of representatives for the cosets Ky(1)/Ko(wr) we take the set {I} U X, where

2={<_ﬁl é) : ﬁeoF/wFop}.

We are led to compute the following sum

S(t) =Y Weli(€]£ (& ¢2),

{ex

for t € Op, where the values f(;p2) are given by Proposition 2.5.3

/ [( 2 })) ;302] — |AJw(A). (12.3)

o) =676 ) ()

together with the functional equation for the Whittaker newform (Proposition 3.1.1 (ii)), we deduce
that for £ € X,

From the identity

Wali(t)€] = Weli(ter)le(m, ¥),
where Wﬂ is the Whittaker newform for the contragredient representation 7.
Since m = o(n|- [V/2,n|-|~'/?), with 5 unramified and 1> = 1, we have that 7 = 7 , and the

epsilon factor is €(m, 1) = —n(wr) (see [Zha0l]). By Proposition 3.1.1, we have

Wx[i(twr)] = n(wp)|or|Wli(t)],
hence, we find
Wri(t)¢] = —|wp|Wr[i(t)] for all £ € X.
Since there are |wp|™! terms in the sum S, we obtain (taking into account that f(&; @) =
|wp|w(wr) for £ € X):
S(t) = —lwrlw(w@e) Wxli(t)]:
It follows that
¥ (s, 01,02) = p(Kn(r) L~ [rltmr)] | oy TR @IWli@)al"™ @

The integral over N(K *) is the same as the integral over F'*: when K = F @ F, this is clear, and
when K is a field, we have W, [i(—t)] = 0if t ¢ N(K*). Hence, the conclusion follows by applying
Lemma 4.2.1.

Case A3. In this case, we compute directly the Whittaker coefficient W, (i(t)k;¢¢) and the
function f(k; %) appearing in the integral (4.2.2), using Lemma 2.5.2. The computation is more
complicated when the residue characteristic of F' is 2, when we take the liberty of assuming that
F=Q. Fix a € 571/Of and let r = —vg(a),s0 0 < r < C.
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Using formula (2.1.1), we have for k € Ko(1)" with k1 = (25) (see the notation)

ks ) = w(-Ac el y [ wlac aNG)dy
au~ 140k
(=M elty [ vl aNG) .
OH‘OK
where the second equality follows from a change of variables, using the fact that N(u) = —A.
The integral appearing above is computed in Lemma 2.5.2(ii) and (iii), for & € O and « ¢ Ok,

respectively.

The Whittaker function can be computed using Proposition 4.1.2:
Wi [i(8)k; 0] = [t n(t k)% (th o) d
i)k o] = [t "n(t) Kl?‘l( 1)@t (th™ o) do,

where h € K with N(h) = tdet k, and 7 is the unramified character of F* such that n(wr) = x(wk).
Using the definition of the Weil representation (2.1.1), we have

ri(k)et (z) = Ic_l\w(—c_l)’vfw Yl (aN(z) + dN(y) — Tr(zy))] dy.

Since Wi[i(—t)] = 0 if ¢t ¢ Op in the integral (4.2.2), we can assume ¢ € Op in the next formula,
which implies that x = th™'o € Of. Using the fact that ¥[(c"ta — c71d"})N(z)] = 1 for z € O,
we have

Rk @) = M o(—e )y [ ol aN) .
Oé"rOK
Noting that the last integral is the complex conjugate of the integral appearing in the formula

f(k;99), it follows that

2

Woli(t)ks o217 (ks ) = Wili(0)] e ~2 / vl NGy

where we have used W, [i(t)] = |t|};/277(t) for the Whittaker newform W, . The integral appearing in
the last formula is computed in Lemma 2.5.2(ii) or (iii), depending on whether a € O.

e o € Ok. Then Lemma 2.5.2(ii) applies and we obtain

Wx[i(t)]‘ﬂ'p‘c if ce UF,

W li(t)k; o1 f (ks 05) = 0 if 0 < vp(c) < O,
W, [i(t)] if vp(c) = C.
The Rankin—Selberg integral becomes
Vs ) =7 [ ooy WO (12.4)

where 7 = |7p|“u[Ko(1)* — Ko(wr)t] + u[Ko(w$)T]. Since the measure is normalized such
that u(Ko(1)*) = 1, we obtain

7 = 2lwp|“ 1+ |wp| ) = 2u[Ko(wF) ]

Together with Lemma 4.2.1 and the fact that the measure of N(Uk) is 1, this proves the
desired identity.
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e a & Ok. Then Lemma 2.5.2(iii) applies and we obtain
W, [i(t)]|r|© if c € Up,
Wi li(t)k; oT1f (k5 05) = 4 0 if 0 <wvp(e) #C —r,
Wy [i(®)]lwr|?—2¢ if 0 <wvp(c)=C —r,

where the last case can occur only when C' > 1, that is F' = Q3. The formula (4.2.4) still holds,
but now 7 is given by

|wr|“M A+ wp| ) ifvp(a) = -C,
T |wp|972(1 + |op| ™)t if —C < vp(a) < —1.
The conclusion follows by Lemma 4.2.1.
Case A4. Let the conductor of x be S > 0. In this case, both W, (-;¢1) and f(k;p2) are right
invariant under Ko(w”), by Propositions 4.1.5 and 2.5.3, respectively. Formula (4.2.2) becomes
W (s, 01, 02) = Ko ()] /N oo WA @) o1l €l e

§€K0 /Ko

As system of representatives for the cosets Ko(l) /Ko(w?) we take the set ¥ = 1 U 5y, where

El:{(—ﬁl [1)> :WithﬁEOF/w,%SOF}a

22:{( 1 0> :WlthOtEOF/WQS 1(’)}7}.

wpa 1

We are lead to compute the sums

=Y Wli@)& el f(E ), =12

£ex;

As in case A3, the Whittaker function can be computed as follows for a € Op:

Wyli(a)&; 1] = \alF / (&)1 (ah ™ o) x(oh) do,

where Nh = a. For ¢ € Xy, it is easy to see from formula (2.1.1) that r1(&)e1(th~lo™!) = 0
(since x is ramified), hence Si(a) = 0.
To compute So, let £ = (w}m ?) € Yo with a € (’)F/w2s LOp, o ¢ w%S_IOF. By Proposi-

tion 2.5.3(i) and by formula (2.1.1) we have

f(& 02) = [Awmp o w(wra)

r1(€)e1(z) = wwra)lwp'a™| | x(y)¥lwp'a Ny - 2)] dy.

Uk
Writing o = w’;lu withr=1,...,25 -1, u € UF/U%S_T, the summation over a becomes
25-1
So(a) = a)]+a|'/? Z Z | p| 292 / / x(chy)Y[wp v 'N(y—ac™th™1)] dy do.

r=1 weUp /U
(4.2.5)
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We compute the sum by keeping r fixed and summing over u, using the identity (valid for n > 0):

0 if —n <wvp(x) < -2,
> lur) = —¢gn ! if vp(x) = —1, (4.2.6)
u€Ur/Up (q—1)gv ! ifx € Op.

Note that the same formula holds if u is replaced by u~! in the argument of .
There are two cases to consider, depending on whether K is a field or the split algebra.

e K is a field. When a € wpOp (implying that N(y — ac~'h~!) € Up independent of y € Ug),
we claim that the sum over u vanishes for each fixed r. Indeed, if r < S, identity (4.2.6)
applies to conclude that the sum over w is independent of y, hence the integral over y vanishes.
If » > S, then the integral over y is seen to vanish by a change of variables y = v + wf}z, with
v E UK/U[‘%,Z € Ok.

Assume from now on that a € Up. After a change of variables y = ah~'o~!2, the sum becomes

(taking into account that the measure on K' is normalized such that K' has measure 1):
25-1

S@= Wi+ Y. 3w [ e ey - )dy (427

r=1 uEUR JUZST Uk

When r < S, we can sum over u first, using identity (4.2.6). When r > S, a change of variables

y=v+ w}q{z as before reveals that the integral over z vanishes unless v € U}}_S . In the later

case the sum over u can again be computed using identity (4.2.6). The result is

25-1

sty =Wl X ([ x|

r=1 v[N(y—1)]zr-1

7" 'x(y) dy) :
We finally obtain

Sa(a) = Wlita)] + 5 [
Uk
where we have used the fact that the Whittaker newform W, [i(a)] is 1 if a € Up and 0 otherwise
(since L(s,m,) = 1). It follows that
\I’+(8, $1, @2) = M[KO(W%S)]L(L w)—l’

which is the desired identity since L(s, 7 x my) = 1.
1

x(y) dy — /U X(y) dy = Wyli(a)](1 +¢71),

o K =F + F is split. Then x(y1,y2) = n(y1)n~ " (y2), with n a character of F* of conductor S.
We let w = wp in the sequel. Formula (4.2.5) becomes in this case (recall that we assume

a€ Op)

25—-1
Sy(a) = Wy li(a)] + |a|/? Y Y (e

r=l weUup/UE T
- / / n(yr10yy oayplesu" (1 — oY) (g2 — ao)] dy dys do.
Fx UFXUF

By Lemma 2.1.2, the integral over Ur X Up vanishes unless there exist y1,y2 € Ur such that
vi(y1 — o 1) = vp(y2 — ac) = r — S, which can only happen if both 0=1, aoc € Op. Moreover,
if a € wOp, the integral vanishes unless » = S. In the latter case, the identity (4.2.6) applies
to conclude that the sum over u € Up/U }5; is independent of either y; (if ol e wOp) or yo
(if ac € wOp). Therefore, the integral over either y; or y, vanishes after performing the
summation over u, hence the sum vanishes for a € wOp.
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Assume, therefore, a € Up from now on. After a change of variables, the sum becomes (taking
into account that the measure on K is normalized such that K N Uy has measure 1):

25-1

So(a) =Wyli(a)l + > > |we

r=1 ueUF/U%S‘fr
-L/“ (s el S alys — 1)(yz — 1)] dys dys.
UF ><UF

If r < S, the integral vanishes by Proposition 2.1.2. For r > S, a change of variables y = v+wz,
with v € UF/UE X UF/UE, z € Op x O, shows that the integral over y = (y1,y2) vanishes
unless v € Up/ UI’;_S x Up/ U;‘S. If that is the case, we can apply again identity (4.2.6),
to obtain (we have replaced r by r — 5)

S—1
a) = ila S r _ r—1 )
Sa(a) = Wyli(a)] +¢ ;(/ vy OxW)dy / vy 4 x(y)dy>

v[N(y—1)]>r+S V[N(y—1)]=r+S-1

The two integrals can be computed as before by breaking down the integration domains, e.g.
{y € Up x Up : N(y —1) > 7+ S} = UP\UF x US U+ UUE x Up.

Taking into account that n has conductor S, it follows that the second integral is always 0,
while the first is nonzero only for r =S — 1. We obtain

Sa(a) = Wyli(@)](1 —¢7),

which leads to the desired formula as in the previous case. ]

4.2.2 Archimedean case. Assume now that F' = R and that 1(z) = ¢***. The archimedean
Rankin—Selberg integral can be computed using the following well-known lemma.

LEMMA 4.2.4 (Barnes’ Lemma). Assume that f1, fo are smooth functions defined on R*, at least
one of which is even, and such that

/ F@al=Y2 d%a = Gy (s +11)Ca (s + 1)
RX

/ f2((1)|a‘s_1/2 d*a = Gl(S—l-tl)Gl(S-l-tg),
RX

the integrals converging absolutely for large enough Re(s). Then the following identity holds

| |2 i—1 Gl(s + T —I—tj)
s—1 3% %)=

d”a = .
/RX (@) fala)lal “ G1(2s+r1 +rg+ 11 +t2)

Recall that Gy (s) = m~*/?T'(s/2).
Proof. See [Ja72, p. T7]. O

Consider the setting described in §4.2. Let 7 be an irreducible representation G(R) with trivial
central character, K = R+ R the split algebra, x a character of K* trivial on R*, 7, the principal
series representation attached to x, and A € R*, A > 0. Since x is trivial on the diagonal R*,
we can write x = (x1, Xl_l), for x1 a character of R*. For the global case, it is enough to consider
the following restriction on the data above.

ASSUMPTION 4.2.5. The representation 7 is either discrete of weight 2k > 0, or a principal series
(1, p2) of weight 0, such that pq(—1) = x1(—1).
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By Proposition 4.1.3, we have that

(a7 +a3)

Wy(g: 1) = Wyl(g), for pi(xy,22) =€ ;

where W, is the Whittaker newform for 7,. With this choice of ¢, the Rankin-Selberg integral
becomes

U (s, 01, 02) =/ W li(a)K]Wy[i(—a)k]lal* ™ f(k; p2) dk d*a, (4.2.8)
RX xSO2(R)

which is the classical zeta integral denoted by W[s, Wr, Wy, f(-;¢2)] in §4.2. We have normalized
the measure dg on Z(R)N(R)\G(R) in (4.2.1) such that:

dg = |a|"td*adk for the decomposition G(R) = Z(R)N(R)T;(R)SO3(R).

Here d*a is the multiplicative Lebesgue measure on 77 (R) ~ R* and dk is the measure on SO2(R)
of total mass 1.

PROPOSITION 4.2.6. Let m,m, be two representations of G(R) satisfying Assumption 4.2.5, and
let 2k > 0 be the weight of w. Let w3 € S(R?) be the weight —2k function denoted by ¢}, in
Proposition 2.5.5. Then

Ut (s,01,p2) = x1(—1)L(s, 7 X m3)/G1(25 + 2k).

Proof. By Proposition 2.5.5, the function f(-, ¢2) has weight —2k under the action of SO3(R). Hence,
the integrand in the formula (4.2.8) is right SO2(R)-invariant, and the desired identity follows easily
from Proposition 3.2.1 and Lemma 4.2.4. If 7 is a principal series 7(u1, p2), the assumption that
p1(—=1) = x1(—1) has been made to ensure that the product Wr[i(a)|W,[i(—a)] is an even function
of a, otherwise Ut (s, ¢1, p2) vanishes. O

4.3 The Rankin—Selberg identity

We now come back to the global setting considered in the beginning of §4. We choose A = ANc¢(x)?
with A a prime that splits in K such that A = —N (mod dg). As we shall show in §5.1, the
quaternion algebra ramified exactly at the even number of places dividing N which are inert in K,
has global Hilbert symbol (dx, —A).

Putting together the local computations from the previous section, we obtain the following
integral representation for the Rankin L-function:

L(s,my X my) = M(S)/ Wi(g)Wy(eg; 1) f (s, g5 92) dg,
Z(A)N(AN\G(A)T

where W; is the product of the Whittaker newforms for 7, over all places, and the local components
of the functions ¢1, g2 € S(K,) are given in Table 1 in the nonarchimedean case (see the last column
in Table 1 for the case corresponding to a given finite prime p; if p | dg, take o € Ok ), and in
Proposition 4.2.6 in the archimedean case. The constant M (s) is the product of the local factors
given in Propositions 4.2.3 and 4.2.6; we are only interested in its value at s = 1/2 (recall that

Xoo = (X1, X1 1):
M(1/2) = 31 (—1)2°G1 (1 + 28) Lan(L,wi)ND [ (1 +1/p), (4.3.1)
p|ND
where 1 is one of the components of yo and « is the number of primes dividing dg.

Let E(s,g) = E(s, g;¢2) be the Eisenstein series formed from the flat section f(s, g; p2):

E(s,9) = Y. [(s,79:2).
YEBQ\G(Q)
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Also, let ¢; be the automorphic form on G(A) with Whittaker coefficient Wy, and recall that
0, (-; 1) is the automorphic form on G(Q)G(A)" with Whittaker coefficient W, (-;¢1). That is,

D

£eQ
0
Oy (gio1) =Clo)+ . Wy <<o 1> g;s01> (4.3.3)
€EN(KX)

where C(g) is the (possibly 0) constant term of 6, which appears since the representation 7, is
not cuspidal in general. The second series is summed over N(K*) rather than over Q* because of
Proposition 4.1.2(ii).

Then an easy modification of the standard Rankin—Selberg argument (e.g. [Bum97, ch. 3.7])
leads to the following.

PROPOSITION 4.3.1. With 1, p2, M(s) defined above, the following identity holds for Re(s) large
enough:

Lismy xm) = M(s) [ 01(9)0x(g: 1) (5.9 02) dg.
Z(A)GQHT\GA)T
Proof. We have to prove the identity

Wi (g)Wy(eg; 1) f(s,9;02)dg = / b1(9)0x(g;01)E(s, g5 p2) dg.
Z(A)G(Q)+\G(A)*

For reasons of space we omit the Schwartz functions from the notation. Denote by I; the integral
appearing in the first line above and by I the integral on the second line. Using the formula for
E(s,g) we have (see the notation):

b:/ 61(9) by (9)f (5, 9) dg
Z(A)B(Q)T\G(A)T

¢y (bg)0y (bg) f(s,bg) dbdg

/Z(A)N(A)\G(A)+

/B(AV\G(A)+ /Z(A)B(@)*\B(A)+

by (tng)0y(tng) f(s,tng) dndtdg.

/B(AV\G(A)+ /Tl(Q)+\Tl(A)+ /N(Q)\N(A)

The superscript + denotes the intersection of the corresponding groups with G(A)™. For the second
identity we use the isomorphism B/Z ~ Ty N. The measures on G(A)"/B(A)" are normalized in
the same way as in the integral I; (using the local measures), while the measures on 77 (A) ~ A*
and N(A)/N(Q) ~ A/Q are the standard measures.

Next we replace 6, by its Fourier expansion (4.3.3). Since 77 normalizes N, we have C(tng) =
C(tg), f(s,tng) = f(s,tg) for t € Ty (A), n € N(A), where C(g) is the constant term in the Fourier
expansion. Therefore, integrating C(tng) against ¢¢(tng) over N(Q)\N(A) yields 0, and we have

T S e
B(A)T\GA)T JT1(Q)T\T1(A)+ JN(Q)\N(A) e (Q)t

- / / / ¢1(tng)Wy (tng) f(s,tg) dn dt dg.
B(A)F\G(A)T JT1(A)T JN(@Q)\N(A)

In the last step we have collapsed summation with integration. The inner integral can be written
using a change of variables and the fact that W, has character 1) under left multiplication by N(A):

/ or(tnt = tg) W (tnt~'tg) dn = W (etg)W, (tg)[t| ™!
N(Q)\N(A)
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hence we finally obtain

= / / Wi (etg) Wy (tg) f (s, tg)|t| ™" dt dg.
B(A)T\G(A)T JTi(A)+

However, this is just another way of writing the integral I; (recalling that the measure on 7 (A) ~ A*

was normalized by a factor of |¢|~! in the local integrals). O

5. The Shimizu correspondence

Evaluating the formula in Proposition 4.3.1 at s = 1/2 (by the principle of analytic continuation)
we obtain

L(1/2. 77 x my) = M(1/2) / 61(9)0x (95 01 E(1/2, g; 02) d,
Z(A)GT(Q\GT(A)

where M (1/2) is given by (4.3.1). The forms 0,, £(1/2, g) are theta lifts from the quadratic field K
viewed as a vector space with norms Ny, ANg /g, respectively (the second in virtue of the Siegel—
Weil formula). Recall that A = AN¢(x)?, with an odd prime A such that A = —N (mod dg), and
« is the number of prime divisors of dg.

This section is organized as follows. In § 5.1, we consider the quaternion algebra B ramified at the
primes in S = {p | N : pinert in K}, and we show that the quadratic space (B, Ng /Q) decomposes
orthogonally into the two-dimensional quadratic spaces of the previous paragraph. In §5.2, we apply
the ‘seesaw identity’ to rewrite the Rankin—Selberg integral above in terms of a toric integral of the
Shimizu theta lift 6(x,y) on GSO(Ba) ~ By x By /A%, of the form ¢;. In §5.3, we compute the
level of 6, thus identifying up to a constant its components belonging to the space of the Jacquet—
Langlands lift of . When the character x is unramified, the constant is determined in § 5.4 using
a result of Watson [Wat02].

5.1 Quaternion algebras

First we show that the quadratic vector spaces (K,Ng/r) and (K, ANk, p) provide an orthogonal
decomposition of the quaternion algebra B ramified at the set S of primes dividing N, which are
inert in K. Recall that the set S has even cardinality, due to the assumption on the sign in the
functional equation for L(s, 7y x my).

Indeed, we claim that the quaternion algebra B has global Hilbert symbol (dx, —A), that is

B=QoQidQj ®Qk

with i2 = dg, j2 = —A, and k = ij = —ji, where A = ANc(x)? as above. To check that B is ramified
exactly at the primes in S, we compute the local Hilbert symbols (dx,—A), for all odd primes p
and use the product formula (see [Vig80] for the facts about the local Hilbert symbol that we use):

e if p | N, p odd, then (dg,—A), = (dk,p), since N is assumed square free, and the latter
symbol is 1 or —1 as p is split or inert in K, respectively;

e if p | dk, p odd, then (dg,—A), = (p, —AN), = 1 by the assumption that A = —N (mod dk);

e if p =), then (dx,—A)) = (dr,\)x = 1 because X splits in K;

o if p{ ANdg, p odd, clearly (dx, ANc(x)?), = 1.

Note that the quadratic field K embeds into B and the decomposition above becomes
B=Ka&Kj, (5.1.1)

where j € B is such that kj = jk for all k € K, and Ny /0(j) = A. The bar denotes the nontrivial
automorphism of K over Q. The decomposition (5.1.1) is orthogonal with respect to the quadratic
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form on B induced from the reduced norm, and we can view K and Kj as two-dimensional quadratic
spaces over Q with norm derived from the reduced norm Np,g on B.

5.2 The seesaw identity

Let B be the quaternion algebra defined in §5.1. Viewing 6, and FE(1/2,g) as global theta lifts,
we change the order of integration in the Rankin—Selberg integral, a technique which has been
formalized by Kudla in [Ku83]. The present situation has also considered by Roberts in [Rob98],
and it can be summarized by the following seesaw dual pair diagram:

[G(A)T x G(A)T] GSO(Ba)

G(A)* (GSO(K ) x GSO(Kyj)] = H(A)

The square brackets around a product of groups indicate the subgroup of elements with the
same scale factor (e.g. with the same determinant inside G(A)™ x G(A)*). The diagonal lines
indicate the dual pairs on which the theta correspondence takes place. The left vertical arrow is
diagonal inclusion, and the right vertical arrow is the natural embedding given by viewing (u,v) €
[GSO(Ka) x GSO(K,aj)| as the similitude x +yj — p(x) +v(y)j of B(A). Note that the similitude
(1, v) of Bp has the same similitude factor as that of p or v.

To make the notation uniform, in this section we denote by r1, 79, 7 the Weil representations
defined on the groups [GSO(Ky) x G(A)T], [GSO(Kxj) x G(A)T], and on [GSO(Ba) x G(A)*],
respectively, as in §2.3 (ry has been denoted by 75 previously). Let 61,605,0p be the corresponding
theta kernels. For simplicity, denote by H(A) the group [GSO(Kya) x GSO(Kaj)]-

Tensoring the decomposition B = K @ Kj in (5.1.1) with Q, at all primes p (including p = 00),
we obtain local decompositions:

By = Kp @ Kpjp, (5.2.1)

where j, = j for p # A, while if p = X\ we take jy = j/(1,\) (recall A = ANc(x)?, with A split
in K). Here and in the sequel we fix embeddings B — B, at all places p. Thus, jj, is an element of
B, that anticommutes with K, and whose reduced norm satisfies Nj, = A, for p # X, while Nj, a
unit in Zy.

Let ¢1,p2 € S(Ka) be the functions that give rise to 0,, £(1/2,g), and which were determined
in §4.3. Also, let ¢ € S(By) be the function with local components

ep(T1 4+ 22p) = @1,p(21)P2,p(22). (5.2.2)
The crucial property of the seesaw pair is that the representation rg decomposes as follows:

rg[(h1, h2), gle(x1 + x25) = r1(h1, g)p1(x1)r2(h2, g)pa(22),

where (hi, he) € H(A) with similitude factors A(h1) = A(h2) = det g. In terms of the theta kernels,
this implies

OB((h1,h2), g; 01 ® w2) = O1(h1, g;01)02(ha, g; ©2). (5.2.3)

The seesaw identity uses this observation together with Fubini’s theorem to move the integration
from one side of the seesaw to the other.
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Consider the theta lift of the form ¢ to an automorphic form on GSO(B,) (the adjoint to
‘Shimizu’s lift’):

Or(os¢) = / 05(0,919;0)Pf(919) dg1, (5.2.4)
SL2(Q)\SL2(A)

for 0 € GSO(B,) and g € G(A) with det g = A(0) (here A denotes the similitude factor). Then the
following ‘seesaw identity’ holds:

/ 0790055 91 B2, gi0) dg =2 [ 05 @)x(h)dh,  (5.25)
Zg(A)GQT\G(A)+ AXH(Q)\H(A)
where the group A* on the right-hand side is identified with the center of GSO(Bj,).

First it is convenient to replace the integration domains by Zg (A +)G(Q)T\G(A)T, and by
A% L H(Q)\H(A) (which does not change the integrals since A* /A% |, Q* has volume 1). We have
denoted by Acfo, o the ideles with positive archimedean component and unit nonarchimedean com-

ponents. Let C' denote the compact group Ny g(Ag)/A% Ng/oK*. We use the following exact
sequences to normalize the measure on the groups involved:

1 — SLa(Q)\SLa(A) — Z6(Aw+)G(QMGA)T & € — 1 (5.2.6)
1 — Hi(Q\Hi(A) — AL, HQ)\H(A) > C — 1. (5.2.7)

Here A denotes the similitude homomorphism, and H; denotes the subgroup of elements of H with
unit similitude factor. Note that H;(Q)\H;(A) can be identified with two copies of SO(K)\SO(Ky).

Fix a measure d¢ on C which is the restricted product of local measures on N(K),) such that
N(Uk ) has volume 1, and of the multiplicative Lebesgue measure at infinity. It is easy to see
that C' has unit volume with respect to this measure. In the first exact sequence, let dg be the
measure on ZG (A +)G(Q)T\G(A)T used to derive the Ranking—Selberg formula, and let dg; be
the measure on SLo(Q)\SLy(A) such that dg = dg; d€. Tt follows that dg; is the restricted product
of local measures on SLy(Q),) such that SLy(Z,) has volume 1, and a measure at infinity for which
SO2(R) has volume 1.

In the second exact sequence, let dh; be the measure on SO(K)\SO(K,) used in the theta inte-
gral for 0, which has total mass hx Inex, where hx is the cardinality of the narrow class group of
K, and €x is the smallest power of the fundamental unit that is totally positive (see §4.1). It
follows that the measure on SO(K)\SO(Ky) used in the Siegel-Weil formula is dhy = dhy/(hg Ineg)
(since it is a measure of unit total mass). The measure on Hy(Q)\H;(A) ~ (SO(K)\SO(Ky))?
is then dhjdhy, and we normalize the measure dh on AZ  H(Q)\H(A) by dh = dhy dhsdg.
Then the right-hand term of the seesaw identity becomes

/ / / O5[(h1h(€), hah(€)), :19(€); 01 @ o] -
C JH1(Q)\H1(A) JSL2(Q)\SL2(A)

- ¢5(919(8))x(h1h(€)) dgr dhy dhy dE,

where h(§) € GSO(Ky) = GSO(K4j), g(&§) € G(A) with A(h(€)) = detg(§) = . Similarly, the
left-hand term can be written

2 / / / 01 [ h(€), 919(6); 01102 [Rah(€), g19(); 2] -
C JSL2(Q)\SLa(A) J(SO(K)\SO(K}))?2

- ¢5(919(8))x(h1h(€)) dhy dha dgy dE,

where the constant 2 in front of the integral is the value of x in the Siegel-Weil formula
(Theorem 2.4.1). The identity now follows from (5.2.3) by interchanging the order of integration.
This is justified, since both sides converge absolutely due to the presence of the rapidly decaying
cusp form ¢y.
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Remark 5.2.1. In the proof of the seesaw identity, we have used a version of the Siegel-Weil formula
in which the integration is over SO(K)\SO(Ky) rather than over the whole orthogonal group.
The difference between the two integrals is due to the existence of places p such that ¢, # ¢, 0y,
where ¢ = [[, ¢p, and ij is the generator of Gal(k},/Q;). Indeed, letting S be the (finite) set of
such finite places, the two integrals are related as follows:

0(ch,g; ¢ / (Uh, g; ™) do,
/0(K>\O<KA> #5 2

where gof = ppoi, for p € R, and gof = ¢p for p € R. Since the function ¢9 considered here
is invariant under the local involutions 4, for each prime p, it follows that the two integrals agree
here (at p = A the local involution interchanges the factors of the function ¢ y listed in case Al in
Table 1, but the local integrals are the same for both functions). However, that is not the case for
more general functions @, as will be seen in the proof of Theorem 5.3.9.

To interpret the right-hand side of (5.2.5), we identify the right vertical embedding in the seesaw
diagram as follows:

GSO(By) «—— B} x B)/AX

T T (5.2.8)

H(A) —— K x K /A*
The top isomorphism is given by (g,¢')v = gvg'~! for g,¢ € BX,v € B, while the bottom iso-
morphism is given by viewing (z,y) € K x K as multiplication by zy~' in Ky, and as (left)
multiplication by ! in Kaj. Finally, the right vertical arrow is given by the fixed embedding

KA — BA.
Using the identification (5.2.8), the seesaw identity (5.2.5) becomes
2 _
/ ¢7(9)0x(9; 1) E(1/2, g; p2) dg = 7/ Of(x, y; 0)x(zy~") du dy.
Z(8)G+(Q)\G+(A) hiIner Jax g rxx)2

The measure on A* K*\ K} is normalized as in §4.1. The factor 1/hx Inex appears because of the
difference between the measure normalization in the two-dimensional theta integrals, as explained
above.

5.3 A level computation

Combining the last identity in the previous section with Proposition 4.3.1, and taking into consid-
eration Dirichlet’s class number formula? Lg, (1, wx) = hi Inex /+/dg, we have shown that

21+a
L(1/2. 7 x 1) = x1(—1) 2 (L + 20ND ] (14 1p)(p),
Vi p|ND
where
I(p) = / 0, (. o) x(ay ") de dy. (5.3.1)
(AXKX\K )2

Recall that 6 is the automorphic form on GSO(By) ~ B x By /A* defined via the Shimizu
correspondence in (5.2.4), and that y; is one of the two components of Y.

Note at this stage that the form 0(z, y; ¢) depends on the quadratic field K and on the character
x only via the Schwartz function ¢ € S(Bj) used to define the theta kernel in the integral (5.2.4).

Dirichlet’s formula is usually stated in terms of the class number and fundamental unit of K, while here we have
written it in terms of the narrow class number hx and the smallest totally positive power ex of the fundamental unit.
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We shall first express the Schwartz function more intrinsically in terms of certain orders in the
quaternion algebra B.

Using the decomposition (5.2.1), define for each p < co an order R, of B, as follows:
Ry, = Op + Opjp,

where we write O, for Ok ,, the ring of integers in K. By our choice of j,, the order R, is maximal
for p4 D and for p | N, p inert in K, and it has level ND for p | D and for p | N, p split in K (recall
that D = dc(x)?).

For p | ¢(x), the character x, extends to a character of the group of units R; in the order R, by
Xp(k1 + kajp) = xp(k1), for ki, ke € O such that ki + kaj), € R;

(this makes sense since Nj, is a unit multiple of ¢(x)?). From the definition (5.2.2) of ¢, it follows
that

oy — 1, if ptelx),
T tgr ifp el
At p = o0, it is convenient to embed K into By, = M2(R) as the diagonal subgroup, and to

let joo —?fA \/OK) in the archimedean decomposition

Boo ~ M(R) = Koo + KooJjoo- (5.3.2)

With this identification the Schwartz function ¢ is given by (recall that ¢ o, has weight 2k > 0)

x - 2 2 2 2
oo (2 Y) = Puly e e,

where Py is the polynomial in Proposition 2.5.5.

Remark 5.3.1. This decomposition is conjugate to that of (5.2.1) by a matrix 7, € G(R). To simplify
notation, we ignore this matrix in the sequel, with the understanding that if 7(x) is an archimedean
Schwartz function defined using the identification (5.3.2), then it should be read as (v 'z7yeo)-
The matrix v, will reappear in the final result, Theorem 5.3.9.

Unfortunately the Schwartz function ¢ does not endow the theta lift 67(x,y; ) with the desired
level at primes p | di, and with the desired weight at infinity (if f has positive weight). Therefore,
we replace the function ¢ € S(By) with a similar function ¢, which agrees with ¢ at all finite
places not dividing dx, and which gives the theta lift 67(x,y; ¢') a level structure and weight that
identifies it uniquely, via Shimizu’s theorem. Of course, we then have to check how these changes
affect the integral (5.3.1), by tracing back the changes to the local Rankin—Selberg integrals, via
the seesaw identity.

At infinity, we let ¢l depend on the weight 2k of 7 as follows:

Poe <§ ?) = [(& — 1) + iy + 2)] e V)

Note that this function agrees with ¢o, for k = 0. It is easy to check that ¢l (kozks) = e2kmi(B—a)
¢'(z), for kq, kg € SO2(R).

At each prime p dividing dg, there are two maximal orders R;,t containing I?,:
R;t = {a+1bjp:a,beé,’ such that a = +bu, (mod Ok,)}, (5.3.3)

where 6, denotes the different of the extension K,/Q,, and u, € Uk, is such that Nu, = —A (such
a choice of u, is possible because w,(—A) = (dg,—A), = 1). The two orders R;,t are conjugate;

848

https://doi.org/10.1112/50010437X06002259 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002259

CENTRAL VALUES OF RANKIN L-SERIES

if vy, is a generator of the ideal 4, 1 then
- -1
R, = v, 'Rl (5.3.4)
which follows from the fact that Tr(d, Y c zZ,.
We denote by Ep either of the two maximal orders R;t, and we set
/
vp=1g,-

Remark 5.3.2. The choice of maximal orders Ep in the definition of <p;, at primes p | dg does not
influence the integral I(¢') defined in (5.3.1). Indeed, if ¢" is defined as " with a different choice
of orders Ry, then (5.3.4) implies that

Op(z,y:¢") = 0p(2v,yv;¢),
with v € A% supported at some of the primes dividing p | dg, for which v, is a generator of d, or
of 0, L Tt is then clear that I(¢') = I(¢") by a change of variables.

The unit groups in the orders Rp,ﬁp determine a compact subgroup of Bg, which we denote

by R*:
“= 11 & 11 B (5.3.5)
ptdx pldx
The notation is motivated by the fact that R* N B is the unit group in an Eichler order R C B of
level Nc(x)?, such that R, := R ® Q, is either R, or R,,.

Remark 5.3.3. Fix isomorphisms B), ~ M>(Q,) at the primes p where B splits. We can choose the
decomposition (5.1.1) such that R, is the standard order of level Ne(x)? in B,. Indeed, choose a
global order R C B whose localizations R, are the standard orders above, and choose an algebra
embedding ¥ : K — B such that V(Og) = V(K)NR (that this is possible can be checked locally,
and it follows from [Vig80]). This embedding can then be extended to a decomposition as in (5.1.1).

PROPOSITION 5.3.4. The automorphic form 0¢(x,y;¢") has the following level structure:

Of(xk,yk's o) = 0p(z,y; ¢') H xp(k lk’ for k, k' € R*

ple(x)
Of(xka,yks; ') = 0¢(x, y; o Ne?™F et for k,, kg € SO2(R),
where kg = (%1 %20)-

Proof. Recall that the theta kernel used to define the form 6 in §5.2 is given by
93((1', y)v g; 30,) = Z 'I"B[(ZL', y)) g]sol(t)v
teB

where (z,y) € By x B and g € G(A) such that N(zy~!) = detg. Since ¢ is right invariant
under the action of Ky(N), it is clear from the definition of 6 in (5.2.4) that the proposition is
an immediate consequence of the following lemma. This lemma can be found in [Wat02], however
the proof given here is different in that it only makes use of the Weil representation attached to
two-dimensional quadratic spaces. O

LEMMA 5.3.5. (i) Let k, k' € R*, and choose g € Ko(Nc(x)?) such that Npg/q(kk'~') = detg. Then

rel(k, k), glehn = [ Xp ' (K )y
ple(x)

(i) If ko, kg € SO9(R), then rg[(ka, kg), 1@l = e2™FilatB
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Proof. (i) By the definition of the Weil representation,

TB[(kﬂ k/), Q]SO = L(k7 k/)TB (91)90

where L(k, k' )o(t) = p(k~1tk') and g1 € Ko(Ne(x)?) N SLe(A) (see the notation). To prove the
statement, it is enough to show that rp(g1)¢’ = ¢, as the action of L(k, k') is easy to compute
from the definition of ¢, in terms of the characteristic function of R, or ]5;

If p { dx, we have gop ¢p, and the Weil representation rp decomposes as follows with respect
to the decomposition in Remark 5.2.1:

re(h)ep(z1 + 22ip) = r1(h)e1p(z1)ra(h)p2p(r2),

where 71,7, are the Weil representations of SL(2) associated with (K, Ng q), (K, AN q), respec-
tively. The conclusion then follows from Proposition 2.5.1.

If p | dg, the function <p1’0 is the characteristic function of the maximal order Ep, and no longer
decomposes as a product of two-dimensional functions. Instead:

op(T1 + 224p) = Z 1a+@p(m1)1au;1+0p(m2), (5.3.6)
a€5;1/(9K7p

(for concreteness, we take Ep = R with the notation from (5.3.3)). Denote by ¢f,, ¢S, the
characteristic functions appearing in the decomposition above, for a € 517 1/ Op. To check that cp;, is
invariant under SLy(Z,), it is enough to check it on the generators, the only nontrivial case being
the action of w = ( 0 1) We compute it by decomposing again the action of rp on the components
of 90; into the action of the two-dimensional Weil representations, which are easy to compute:

rBW)eS, ® 68, (o1 + T2p) = Vicpla(a1 + Ay 22)]To, (31)To, (22)
where ¢ = 1 o Trg g, and the hat denotes Fourier transform on K, with respect to the
character ¢ . The Fourier transform has been computed in the proof of Lemma 2.1.1: 1(9 =
1(Op)1 5t Since the character ¢, has conductor ideal 4, L it follows that for x1,z9 € o, v
have

0 if 21+ Auztas ¢ O,
S vplater + Aty ) = A 22 f O
#(Op/0p) if 21+ Au,  z2 € O,

acd, )0,
Since N(up) = —A and p(0,) ™2 = #(0,/8,), it follows that rp(w)e), = ¢, as desired.
(i) Tt is easy to check that ¢/ (kg 'thg) = e2™*i(B+a)yl (1). O

The level computation allows us to identify the forms in the space of W}L appearing in the
decomposition of ¢(z,y;¢’) (by Shimizu’s Theorem 2.3.4).

PROPOSITION 5.3.6. There is a nontrivial automorphic form qb;L on B*(A), belonging to the space
of W;L, such that

Of(z,y;¢') = COW(we)d7-(y),

for a constant C, where € = i(—1) € G(R) (see the notation), and the bar denotes complex conju-
gation. The form qb}L is uniquely determined up to a constant by the following level structure:

(LS) qb;L has weight 2k at infinity, and it transforms as follows under the action of the compact
group R* defined in (5.3.5):

H Xp(kp) 07" () for k € R*.
ple(x)
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Moreover, qzb}L is an eigenform of the Hecke operators at all finite primes not dividing N D, with the
same eigenvalues as those of ¢y.

Remark 5.3.7. If x is unramified, the Shimizu lift has been computed explicitly by Watson [Wat02,
ch. 3], leading also to a value for the constant C' in the proposition. We review Watson’s computation
in §5.4.

Remark 5.3.8. The form qb;L has almost the same level structure at finite primes as the toric
newform appearing in Zhang’s formula for the central value of the Rankin L-function in the quadratic
imaginary case [Zha01]. It differs, however, at the primes p dividing d, when our form has full level,
while Zhang’s toric newform has level dy, and transforms by x under the action of K. It would
be best to replace the form qzb}L in Theorem 5.3.9 by a form of level N, independent of x, in view
of applications to nonvanishing results for twists by characters of varying conductor (as in the work
of Cornut and Vatsal). This is plausible by comparison with the imaginary case, where a similar
result was proved by Zhang in a later paper [Zha04].

Proof. We prove first the claim that the level structure of the form qb;L determines it uniquely up to a
constant. This is a local statement, which follows from the fact that the space of vectors in the local
representations 713171}; having the behavior described above under the action of the corresponding
compact subgroups of B, is one-dimensional. For p { ¢(x), this follows from Casselman’s work
[Cas73], while if p | ¢(x) it follows from work of Zhang [ZhaOl, Theorem 2.3.5] (if p | N, p inert
in K, then B, is a division algebra so Casselman’s theorem does not apply; in this case, however,
w%{;, itself is one-dimensional). Therefore, qb;L also lies in a one-dimensional subspace of the represen-
tation space of F;][L. The statement about the action of the Hecke operators follows from the strong
multiplicity one theorem for automorphic representations of B*(A).

By Shimizu’s theorem (Theorem 2.3.4), the automorphic form 0(x,y;¢") can be written as a
linear combination of products of forms on B*(A) belonging to the representation space of 7T}1L.
The level structure of 0f(x,y; ) given in Proposition 5.3.4 then implies that

O (2,55 ¢') = o} ()01 (v),

where 5% is a form with the same level structure as ng}L, but with y replaced by x~'. Note that
the same is true about the form qbf[L(:L"e), and both are eigenforms for the Hecke operators at primes
not dividing N D. Therefore, they must differ by a constant, by the strong multiplicity-one theorem
invoked before. See also [Zha0l, Theorem 2.4.3|, where a similar argument is used to define the
notion of toric newform. O

The previous proposition allows us to express the integral (') given by (5.3.1), in terms of the
linear form [ defined in the introduction. By identifying € with (—1,1) € K via the decomposition
(5.3.2), it follows that

I(¢") = Cxa (=1)[U(¢7") . (5.3.7)
It remains to compute how the integral I(y) changes, when we replace the Schwartz function

¢ by ¢'. Tracing back the changes through the seesaw identity and into the local Rankin-Selberg
integrals for p | dix and for p = co, we arrive at the following theorem.

THEOREM 5.3.9. If the form qb;L and the constant C' are the ones defined in Proposition 5.3.6,
we have the identity
L(1/2,7mp x my) = M - C - [I(¢%)

where

B ook 2
M=—=2""Nc(x)* [[ (+1/p),
Vik p|Ne(x)
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with 8 =4 for k >0, 8 =2 if k =0, and the linear form [ is given by
= [ s @)
AXKX\K[

The presence of the matrix v, € G(R) is explained in Remark 5.3.1.

Proof. First we note that if the central value of the L-function is zero, the linear form [ vanishes by
Waldspurger’s result [Wal85], and thus the theorem is trivial. Otherwise, the constant C' is clearly
nonzero.

Owing to (5.3.7) and the formula for the central value given in the beginning of §5.3, we only
need to check how the integral I(p) given by (5.3.1) changes when we replace ¢ by ¢’. That amounts,
via the seesaw identity, to re-computing the local integrals encountered already in §4.2:

Ur (s, 01, P2,0) :// Wi pli(0 KWy p[i(—t) ks 01p) fp (s, s 02,) [t~ dt dk,  (5.3.8)
Ko(1)F xN(K)

for p | dx and p = oo, when we replace the components ¢1 5, 2, of ¢, by the components of <p;,.
The situation is complicated by the fact that cpz’g is no longer a product of two-dimensional Schwartz
functions, but a linear combination of such products.

First assume that p is a prime dividing dg, and denote by 9, the different ideal of the quadratic
extension K,,/Q,. Assume for concreteness IAi;p = R} with the notation of (5.3.3). Then ¢/, decom-
poses into two-dimensional components as in (5.3.6), and for a € (5p_ L/ Ok, we have to compute
\IJ; (8,01, ¥5,) (see the paragraph following (5.3.6) for the notation). This has already been done
in Proposition 2.5.1, and we have

Z U (5,90 09p) = Lp(s,mp X 7y).-
ags, /Oy

Globally, let T' = [, 4, 6,'/Op (a direct product), and for each element t = (t),q, € T, let
o, 0 € S(Ka) be two Schwartz functions that agree with 1, @9 for all pt dg, while for p | dx

t t
(e =@ (05)p = 05

Then the previous identity together with the Ranking-Selberg identity over G(A)* (Proposi-
tion 4.3.1) yield

L(s,mp x my) = M'(s) Y W (s, gb)
teT
— M'(s)
teT
where M'(1/2) = x1(—1)G1(1 + 2k)Ne(x)? Iy Nepo (X +1/p).

Before applying the seesaw identity, we have to take into account the fact that cpgp is not always
invariant under the generator i, of Gal(K,/Q,), and hence integrating over the whole orthogonal
group in the Siegel-Weil formula for E(1/2,g;¢h) is not the same as integrating over the special
orthogonal group. By Remark 5.2.1, we have instead

E(1/2,9:¢) = 375 Z/ 02[0h, g; (95)"] do,

R g /SO(F)\SO(K )

/ 61(9)0x (g: 2 E (s, 93 0b) dy,
Z(A)GQ)T\G(A)T

where S denotes the set of primes diving dx. By applying the seesaw identity 2#°dx times we
obtain:

LO /2,7 x 1) =2M (/)Y e 37 Tl © ()",

teT RcS
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where I(y) is given by (5.3.1) for ¢ € S(By). For a fixed set of primes R C S, define the function
oft € S(By) as follows:
=2 ¢

teT
Note that ¢ is equal to ¢’ locally at each finite place, except at the primes p € R, when @II,% is
the characteristic function of the order R,. By Remark 5.3.2, we conclude that I(¢®) = I(@f, ¢o0)
independent of R, and we have

L(1/2,mp x my) = 2M'(1/2)1 (P Po0)-

Assume now that p = oo, and assume that the weight of f is 2k > 0. We need to compute
the change in I(¢) when ¢ is replaced by gl . This is done by decomposing the four variable
function ¢’ into a sum of functions which have weights (24, 2k—25) under the two-dimensional Weil
representations associated with the decomposition (5.3.2). It is convenient to denote by Q(X,Y)
the polynomial appearing in the definition of ¢/, that is

Qu(X,Y) = (X +iY)*.
Write Qp = Qf + iQf, where Qf, Qf are the real and imaginary parts of Q, respectively (the
first is an even, while the second is an odd polynomial in X and Y). We will see that the odd

polynomial @7 will not give any contribution in the local Rankin-Selberg integral, while the even
part decomposes as follows in terms of the polynomials P; defined in Proposition 2.5.5:

QLX.Y) kk,Z < > (X) Py (Y):

To prove this identity, we integrate both sides over R? against the kernel e~ ™1X femmMY? gy dy,
using Lemma 2.5.4 on the left-hand side, and Proposition 2.5.7 on the right-hand side; the identity
then becomes the binomial formula for expanding (1/A; —1/A2)¥. Note that the constant appearing
in front of the sum equals G (1 + 2k).

The previous identity shows that, with respect to the decomposition of By, fixed in (5.3.2), the
four-dimensional function ¢’ decomposes as follows in terms of two-dimensional functions:

k
P <$ y) —Gi(1+2k) Y (~1) <k> o (2,008 7 (y/VA, 2/VA) +odd part,  (53.9)
0 J

z t ‘
J:

where 90%)(331, x2) € S(K) is the weight —2j function under the Weil representation r, at infinity
given in Proposition 2.5.5, while ‘odd part’ denotes the sum of terms whose two-dimensional compo-
nents are products of an odd polynomial and the Gaussian in two variables. We let cpg)) (t1+t2j00) =
gogj)(tl)gpgf_j)(tg) denote the jth term in the sum above, with respect to the decomposition (5.3.2);

o)

note that for j = 0 we recover the original function ... We also let pU) = pg, 08

The odd part in the decomposition above does not contribute to the Rankin—Selberg integral
(5.3.8), since foo(s, g;92,) = 0 for all functions ¢, € S(K) that are a product of an odd polynomial
and the two-dimensional Gaussian. Therefore, we only have to compute the terms [ (go(j)), which
reduces to computing the archimedean integrals W7 (s, ng ), @%_j )), by the seesaw identity. We shall
see that although each such integral is fairly complicated, their sum evaluated at s = 1/2 simplifies
to an elementary function of k.

By Proposition 2.5.5, the functions gogj ), gogf_] ) have weights 7, k — j under the two-dimensional
Weil representations 1 and rp, respectively, hence the integral (5.3.8) becomes

(s, 00 o) / W (0] Wali(—); ] 1 .
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The values of W, o on T (R) can be computed using (4.1.6). Let oo = (X1, Xl_l), with y; = |- |"sgn™
for r € C, m € {0,1}. We only need to consider ¢ > 0 in the following formula, since Wy [i(t)]
vanishes for ¢t < 0:

Wooli(—=1); 1] = x1(=1)¢/ QZ <> /RXW +1/w)2 (ta2) e Bt g

The integrals above can be computed in terms of Bessel functions, using formula (3.2.1), after a
change of variables u = tz2, and after using the binomial formula:

Wy ooli(—t); 0] = 21 (— W?Z () E_: <z%:z> Ji_r(27t).

We compute U1 (s, gogj ),gpg )) by using Barnes’ lemma, for which we need the value of the

integral:

/ ono ( )]ts 1/2d><

<Z> <Z ? z> G (s-iml4r) G (s4i+—7).

1=0 [=
This follows from formula (3.2.2). Recall that Gl(s) = 7T_S/2P(8/2).

Since Wy is a Whittaker newform, its Mellin transform equals the L-function of 7, and
moreover Wy [i(t)] = 0 for ¢ < 0 (see Proposition 3.2.2). Hence, we can apply Barnes’ Lemma 4.2.4
to conclude:

G (e N[ 2 \IIGils+i+k+(l—r)£1/2]
vl (s, 901]’90/\ ] ZZ <2> <2'+l> 1 G1(2s + 21 + 2k) '

=0 [=

where here and in the sequel, the product is taken over all combinations of plus and minus signs.
In order to get the whole contribution corresponding to ¢, , we sum over j with weights given by
the decomposition (5.3.9); denoting by Sk(s) the resulting sum, we obtain

s =i 3550 () G () (1)

7=0 =0 l=—1
[[Gis+i+k+(l—7r)+1/2
G1(28 + 24 +2k)

It is remarkable that the resulting triple sum simplifies considerably. We interchange the first two
sums, and sum over j, using the identity

e () - n

J=t

Using the identity Ga(s) = G1(s)G1(s + 1), we obtain
k

B 2k \ [1Ga[s —1/2+2k £ (I — )]
Si(s) = Xl(_l)l;k <k;+l> G (25 + 4k) '

We relate the last expression to the L-factor Loo(s,m¢ x my) = [[Ga(s —1/2 4+ k ) using the
recurrence relation Ga(s + 1) = (s/27)G2(s):

(2k)1(2m) "2k & k <s —3/2 —r—|—2k:+l> <s —3/24 7+ 2k — z>’

Sk(s) = x1(=1)Loo(s, mp x my) G1(2s + 4k) - k+1 k—1
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where the binomial coefficient (z) is defined as usually for x € C, n € Z, n > 0. The sum over
[ equals the binomial coefficient (28_22k+4k), by a standard combinatorics identity.? Since we are
interested in the central value, we let s = 1/2, and use the formula for G;(1 + 4k) quoted above.

We finally have
Sk(1/2) = x1(=1)2% 7 Lo (1/2, 75 x 7y),
whence the factor 2!72% in the theorem, when k > 0. O

5.4 Determining the constant

It remains to find the constant C' appearing in Theorem 5.3.9. This has been done by Watson in
[Wat02, ch. 3], using an explicit computation of the Shimizu correspondence, and we merely have
to translate that result to the present setting.

In order to apply Watson’s result, we assume henceforth that x is unramified. Then the func-
tion ¢’ from the previous section can be easily expressed in terms of the Schwartz function used in
[Wat02], which we shall denote by ¢®. It is convenient to denote by N~ the product of the primes
dividing N that are inert in K, that is the discriminant of the quaternion algebra B.

For each finite prime p, the function ¢} is a multiple of ¢, depending on the measure normaliza-
tion on SLy(Q)) used in the integral (5.2.4) to define the form 6. Explicitly, recall that the measure
on SLy(Qp) is normalized using the local version of the exact sequence (5.2.6), and with respect to
this measure we have u[Ko(N), N SLa(Qp)] = u[Ko(N),f]. We respect to this measure, we have

1 ¢’ ifpf N,
% ReT] )Pt it | N
pEo(N)p] | S N

Note that pu[Ko(N),] is either 1 (if pf N) or 1/(1+p) (if p | N).
At infinity, the function ¢ is given by (recall € = i(—1) € G(R))
1
w — 1 /
Poo 4ku[SOQ(R)]TB[(€’ )76]90007

and the measure on SO2(R) has total volume 1. Even though the definition of our measure on
SL2(Q)\SL2(A) differs from that in [Wat02] (there it is a Tamagawa measure), the theta lift
Or(x,y;¢") is the same as in that paper.

Therefore, we can use Theorem 1 from [Wat02, §3.2.2], which computes the theta lift 9? of the
form (;S_f in terms of the form (;S}L from Proposition 5.3.6:

_ el

1712
where the norms are with respect to the Petersson inner product, normalized by using Tamagawa
measures on G(A) and B*(A), as in [Wat02, §2.2]. This identity is proved by first showing that

0? = C(;S—}L(;S}L for a constant C, as in the proof of Proposition 5.3.6. The constant is then computed
via the adjoint identity, relating the Petersson inner products of lifts in both directions (again with
respect to Tamagawa measures on G(A) and GSO(By)):

O(x, y; ") o (@)} (v),

(O, 0f)cwm) = (H,07)aso(B,):
f

3If 2,y € C, and c¢ is a positive integer, then

S )=
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where H(z,y) = qb;L(ac)qbf[L(y) is a form on GSO(B,), and 0y denotes the theta lift of H to a
form on G(A), with respect to the same Schwartz function ¢ as before. The form 6y can be
computed explicitly by identifying its Whittaker coefficients, and it equals HQS}LHQQS . It follows that
C = ¢sI*/67"|I* as desired.

It remains to express the form 0¢(x,y; ¢') in terms of the form 07(35, y; ev):
O7(z, y; ") = / O5((2,): 919;¢" )05 (919) dgr
SL2(Q)\SL2(4)
=M / 0[(ze,y), g19¢ 10 (919) dgr
SL2(Q)\SL2(4)

= M'Os(xe,y; '),

where

1 p—1
I
~ g 1L
pIN
and the last equality follows from the fact that Ef(ge) = ¢7(9), as ¢ is the adelization of a newform
with real Fourier coefficients. Therefore, we have

0, (2, 1 1 sl JL
JACZY AR ) - M H(b}LHQQSf (33'€)¢f (y)

Theorem 5.3.9 becomes the following.

THEOREM 5.4.1. Assuming that the character x is unramified, we have the following explicit
formula:

3 p+1 ol
_ JL |12
Vs LTl

where =4 if k > 0 and = 2 if k = 0. The linear form [ has been defined in Theorem 5.3.9, and
the form qb;L is a form of level N and weight 2k belonging to the space of 7T}1L, as in Proposition 5.3.6.

L(1/2,7p x my) =

@),

6. Classical formulation

For applications, it is useful to rewrite the main formula in terms of the classical newform f. We only
consider here the case when y is unramified, and the quaternion algebra B is the matrix algebra,
that is when all the primes diving N split in K. This case contains many features of the general
case, and it is the case employed in [BDO5].

6.1 Geodesic cycles

We start by exhibiting a decomposition of M>(Q) into quadratic spaces in (5.1.1) such that the
local orders used to define the level of W}L are the standard orders of level N in M>(Q,) (see
Remark 5.3.3).

To define the embedding ¥ : K — M5(Q), choose a, b, ¢ € Z such that the following conditions
are satisfied

a?+bc=dg, 2N|ec, 2]|b, ged(a,b/2,¢/2) =1. (6.1.1)

Such a choice is possible because all primes dividing N split in K by assumption. We then have an
embedding ¥ : K — M(Q) given by

v = (0 ") =i

c —a
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which satisfies ¥(K) N My(N) = U(Ok), where My(N) is the set of matrices with integer entries
whose lower left entry is divisible by N. By Remark 5.3.3, ¥ extends to a decomposition

M>(Q) = K + Kj.

as in (5.1.1) and the orders R, Ep that give the level of qb;L are the standard orders of level N in
M2(Qp)'

At the archimedean place, the embedding ¥ ® R is not the diagonal embedding considered
in (5.3.2), rather it is the conjugate of that embedding by the matrix* v, = (a+\c/ﬁ a—\c/ﬁ)
(see Remark 5.3.1). Without loss of generality, we can assume ¢ > 0, so that 7., has positive
determinant.

Note that the form (;S}L in Theorem 5.4.1 can be taken to be ¢, hence the Petersson norms cancel
out in the statement of the theorem, since both norms are computed with respect to Tamagawa
measures. The task at hand is to rewrite the integral

160 = [ 1D @) (6.2

in terms of the modular form f. In order to avoid confusion, we denote by W, s, ¥y the embed-
dings obtained from ¥ by tensoring with A, with Ag,, and with R, respectively.

Let Hpg denote the narrow class group of K, that is the group of integral ideals modulo principal
ideals having a totally positive generator. The measure used in (6.1.2) has been normalized using

the decomposition (4.1.2) and, since ¥4 (Oj) C Ko(N) by the choice of embedding, the integral
(6.1.2) becomes

o) = Y x () / 6 (Wt () (£, £ Yyne] 72,

acHg ei\Ri
where a runs through a set of idele representatives for Hx. Recall that ex is the smallest totally
positive power of the fundamental unit of K.

Fix a choice of ¢ = y/—1. In terms of the decomposition
GL2(A) = GL2(Q)Z(A)Ko(N)GLF (R), (6.1.3)
the form ¢ is related to the classical modular form f as follows:

05(9) = 2f (9001 (900, 1)~ *,  for g = v2kgoo, (6.1.4)

where j(A, z) = (cz+d)(det A)~/2 is the automorphy factor for A = (¢5) € GLj (R). The factor of
2 is due to the fact that f is normalized such that its first nonzero Fourier coefficient is 1 (if £ > 0),
while the first Fourier coefficient of ¢ is 2, due to the normalization of the Whittaker newforms. If
f is a weight zero Maass form, we use this formula to normalize it.

We change variables z = W (¢, 1) V500 = Yo0it? in the integrals above. As ¢ varies in the interval
[1,ex], the complex number z varies between zy = Vi and ¥(ex)zy, along the semicircle on the
upper half-plane, connecting the real numbers (a + v/dg)/c. We call this path the geodesic cycle
corresponding to the embedding ¥. The terminology is justified by the fact that U(ex) € T'o(V),
so the endpoints of the path become identified on the modular curve H/I'o(N).

4Strictly speaking, we need a matrix v that also conjugates j to the matrix joo in (5.3.2), but it is easy to see that
such a matrix would equal the chosen v, up to a scaling of its rows. It is easy to check that such a scaling has no
effect on the computations below.
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In terms of the new variable z, we have

Vi

X
- v - @@ .
drt —cz22 +2az+0 N (6.1.5)
2V dg1
F( Wbt o0, 0)? = a8 (6.1.6)

—cz2+2az+b

Note that 2d*t is the hyperbolic differential along the semicircle parameterized by z = 7aoit’.
Let go € GLI(R) be the inverse of the archimedean component of Wg,(a) with respect to the
decomposition (6.1.3) (the archimedean component is not unique, but all choices give the same
value for the integrals below). Using the identity j(AB,z) = j(A, Bz)j(B, z), after the change of
variables the integral becomes

_ V(ex)zw
I(6r) = Vix i Y xa) / 192215 (9as 95 ' 2) Qu (2, 1) dz, (6.1.7)

acHg A4
where @y is the binary quadratic form of discriminant dx associated to the embedding ¥ as follows:

c b
Qu(z,y) = —5962 + azy + §y2-

Note that the variable z in the integral above describes a portion of the geodesic semicircle con-
necting the roots (a + v/dx)/c of the quadratic polynomial Q(z,1).

The group GL; (R) acts on the right on quadratic forms in the usual way:

(Q)e0) = Qs+ BynCo+ Dy), forg = ({y ) € GLI(R)

After a change of coordinates z = g42/, the integral in (6.1.7) corresponding to the idele a, which
we denote by M (a), becomes

(92 " Tg,)(ex)2a
M(a) = / T N (Qu - g (¢ DI (6.1.8)

where z, = g; '2y, and the integral is over part of the geodesic semicircle connecting the two real
roots of the quadratic polynomial (Qy - ga)(2,1).

Next we choose a system of representatives for the narrow class field Hy that will alow us to
compute the matrices g, explicitly. Let p; = 1,92, ..., pn be a set of ideal representatives for Hilbert
class group of K, such that p;, 2 < i < h, are prime ideals that split in K, dividing primes p; € Z
which are coprime to 2Nc¢. Then a set of ideal representatives for the narrow class group Hy is

Sy — J 1P opnl if hie = h,
{p1,p2, .. pn} U{Vdkp1, Vdrpe, ..., Vdkpr} if hg = 2h.

For an ideal a@ of K, denote by a the corresponding finite idele (which is well-defined modulo 5;\{)
We shall take as idele class representatives a in (6.1.7) the ideles @, for a € Sk.

In order to compute the matrices g4, for each 2 <7 < h, let a; € Z such that
ai=a (modc), a?=dx (mod p;). (6.1.9)

To make the notation uniform, set a; = a, p; = 1. We claim that for one of the two choices of a;
(mod df) satisfying (6.1.9), we have (this holds trivially for i = 1 as well)

pi = [(a; + vd) /2, pil, (6.1.10)

where [u,v] denotes the oriented ideal generated over Z by u,v € Og. Indeed, the ideal p,Ox
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factorizes as follows

piOxk = [(ai + Vi) /2, pil[pi, (@i — /i) /2],
since both sides have norm p?, and the congruences (6.1.9) ensure that the right-hand side is
contained in the left-hand side (using the fact that ¢ is even, so a, a;, dx have the same parity).
For 1 <i < h, define the matrices

i = <18i (a _1“i)/c> € My(Z). (6.1.11)
Since p; is split, we have
pi+1 pi—1 p; — 1
+ a b
v (A) 2 2v/d g 2v/dg
fintPi) = pi—1 pitl pi—1 ’

2Wir 2 ok /,,

where \/d is viewed as a unit of Q,, = K, via a fixed embedding K — Q,,. The index p; indicates
that the matrix is to be viewed as belonging to GL2(Q),) C GL2(A). With ~; defined as above,
the congruence a? = dy (mod p;) implies that

\Ijﬁn(ﬁ\i) = ('Yz‘)pik', with k € KO(N)pi-
Since ; € Ma(Q), the matrix Wg, (p;) factors as follows with respect to the decomposition (6.1.3):
Uan(pi) = ik’ (9 oo
where k' € Ko(N), which means that we can take g, = 7;, for a = p;.
Similarly, letting e = i(—1) € G(R) (see the notation), we can take

Ja = (Z _ba> vie,  for a = +/dkp;.

As a runs through the chosen set of idele representatives for the narrow class group, we shall show
that the embeddings g, ' Wg, and the quadratic forms Qg - g, run through a system of representatives
for oriented embeddings and Heegner forms, respectively, of level N, modulo the action of T'o(V).
Towards this goal, in the next section we recall the connection between optimal embeddings, Heegner
forms, and ideal classes in the narrow class group of K.

6.2 Optimal embeddings and Heegner forms

As in the previous section, let K be a real quadratic field and N an integer coprime with the
discriminant dx of K. We assume that all prime divisors of N split in K, and we fix a choice of
square root ag of dg modulo 4N.

An algebra embedding « : K — M>(Q) given by
I a b
o(Vdr) = <c —a>

is called optimal of level N if a(K) N My(N) = a(Ok), where My(N) is the set of matrices with
entries in Z that are upper triangular modulo N. It is easy to check that « is optimal if and only
if a,b, c € Z satisfy the conditions (6.1.1). Such embeddings exist if and only if all prime divisors of
N split in K (otherwise condition (6.1.1) cannot be satisfied), which we are assuming here.

An embedding « is called oriented, with respect to the given choice of a% = dg (mod 4N),
if a = ap (mod 2N). The group GL; (R) acts on embeddings by conjugation, and the subgroup

[o(N) of matrices of determinant 1 in My(N)* fixes the set of oriented optimal embeddings of
level N.
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Next we define Heegner forms. A quadratic form with integer coefficients Q(z,y) = Cx?+ Azy +
By? of discriminant d is called the Heegner of level N if N | C, and A = ag (mod 2N). The group
GLJ (R) acts on quadratic forms on the right as described in the last section, and I'o(N) fixes the
set of Heegner forms of level N. The form @ is called primitive if its coefficients do not have any
nontrivial common divisor. The action of I'g(/V) takes primitive forms to primitive forms, and we
assume from now on that all Heegner forms are primitive.

To each embedding o : K — M(Q) with a(v/dx) = (¢ 5,) one can associate a quadratic form
Q. as in the last section:

c b
Qulw,y) = —52" + azy + Sy*.
This correspondence is compatible with the action of GL; (R) on both sides, and oriented optimal

embeddings of level N correspond bijectively to Heegner forms of level V.

Let us denote by &x and Fy the set of oriented optimal embeddings and Heegner forms of level
N, respectively. Their number, modulo the action of T'o(N), equals h, the cardinality of the narrow
class group Hg, independent of N. For N = 1, this is just the Gauss correspondence between narrow
ideal classes and primitive quadratic forms of discriminant dg. For an arbitrary IV, the connection
between Heegner forms of level N and ordinary primitive forms of discriminant dg is discussed in
great detail in [GKZ87, §1.1]. A concise account of the facts needed here is given in [Dar92], from
where we have taken the terminology ‘Heegner forms’.

We first recall the correspondence between optimal embeddings (or Heegner forms), and narrow
ideal classes. We denote by [u, v] the oriented ideal of Ok generated over Z by u and v, whose norm
is |uv — vu|/v/dk. Recall that the ideal [u,v] is called oriented if uvv — vu > 0.

PROPOSITION 6.2.1. There is a bijection
I:EN/To(N)— Hg
that sends an embedding o € Ey with a(Vdi) = (a b ) to the class of the oriented ideal

c —a

[(a +VdK)/2,¢/2] ife >0,

I{a) =
(@) [Vdk(a+Vdg)/2,\/dke/2] if c<O.

Proof. Let F be the set of primitive forms of discriminant dx. The natural map i : Fn/Io(IV) —
F/To(N) is a bijection, by [Dar92, Proposition 1.4], while the map I" : F/To(N) — Hp, acting
as in the statement of the proposition on the form —z2¢/2 + axy + y?b/2, is a bijection — see, for
example, [Hec23, Theorem 153]|. The statement now follows from the fact that Heegner forms and
optimal embeddings are in one-to-one correspondence. O

For any matrix A € Ms(R), let A* denote the conjugate of A by the matrix e = i(—1). We extend
this definition to embeddings o by defining o*(v/dg) = [a(v/dk)]*. If a is an oriented optimal
embedding of level N, so is o*, and a and o* are congruent modulo T'g(V) if and only if hx = h,
with h the cardinality of the Hilbert class group of K.

Let ¥ be the embedding fixed in the previous section, and recall that ¥(y/dg) = (‘cl _ba), with
¢ > 0. In the previous section we have chosen a system of representatives Sk for the narrow class
group of K, in terms of which we have defined matrices v; € Ms(Z), for i = 1,..., h. Keeping the
notation from the end of last section, we have the following explicit description of a distinct set of

oriented optimal embeddings of level N.
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PROPOSITION 6.2.2. We have the following.
(i) The map E : Sx — En/To(N) defined as follows

E(p;) = "0
E(Vdgp:) = E(p))* = (0]) ' 0*f (G hic = 2h)
is a bijection.
(ii) More precisely, if I : Ex/To(N) — H is the correspondence defined in the previous proposi-
tion, then we have
IoE(a)=[I(V)|[la] foral ac Sk,

where [a] denotes the class of the ideal « in the narrow class group.

]
Proof. For 1 < i < h, the image of /dx under the embedding E(p;) defined above is (recall that

ap =a,pp =1): )
a; bz . drg — a;
B/ = (& %), i =

Clearly 2N | cp;, and b; € 27 because of the congruences (6.1.9). Moreover, a; = a = ap (mod 2N),
hence the embeddings E(p;), and therefore E(\/dp;), are oriented optimal embeddings.

To show that they are distinct modulo conjugation by I'g(V), it is enough to prove the second
part of the proposition, which would imply that the given embeddings map to distinct ideal classes
under the map I of Proposition 6.2.1. We have to show that

IoE(p;) = [I(V)][ps],

which, by the explicit formula (6.1.10), reduces to proving the following identity between oriented
ideals (recall also that we have assumed ¢ > 0):

[(ai + Vdx)/2,epi/2] = [(a+ V/dK)/2,¢/2] - [(ai + V/dk) /2, pi].

Indeed, both sides have the same ideal norm, and it can be easily checked, using the congru-
ences (6.1.9), that the ideal on the right-hand side is contained in the ideal on the left-hand side.
For example, p;(a + /di) = pi(a; + Vdk) + pi(a — a;), and since a = a; (mod c), the last term
belongs to the ideal on the left-hand side, etc.

Similarly,
v Io E(v/dps) = [I(0)][\/dscpi],

hence the map IoE : Sx — Hp is simply translation by the ideal class [I(¥)], hence it is a bijection.
It follows that the map FE is a bijection as well. O

6.3 A classical formula

Proposition 6.2.2 shows that, as « runs through the set of representatives Sk for the narrow ideal
class group, the embedding ga_lllfga appearing in the integral (6.1.8) runs through the set of repre-
sentatives {E(«) : a € Sk} for E5/To(N). Therefore, formula (6.1.7) becomes

E(o)(ek)za
op) = Vi “F S xl@ / ()@ (2, ) dz,

aeSK
where the integral is over part of the semicircle in the upper half plane connecting the real roots of
QE(a)(2,1). The matrix F(a)(ex) € To(IV) is an automorph of the quadratic form Q g, that is a
generator (modulo torsion) of the rank 1 subgroup of SLy(Z) fixing the quadratic form; denote it
by MEg(,). Concretely, if ex =m +ny/dg, with m,n € Z/2, and Qg (x,y) = —x%c/2 + axy + by? /2,

then
My — <m +na nb > .

nc m —na
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Note that the previous formula for [(¢f) depends on the choice of embedding ¥ used to
define the map E : Sk — En/I'o(IN). However, its absolute value does not, due to the second
part of Proposition 6.2.2, and to the fact that y is unitary. Viewing y as a character of the nar-
row class group Hg, and identifying narrow ideal classes with oriented optimal embeddings by
Proposition 6.2.1, we arrive at the following formula:

My zg 2
P = > ) [ HeQu )

Vel /To(N) 2y

where the integral is over part of the semicircle connecting the real roots of Q. If f is a holomorphic
form of weight 2k > 0, the integrals above do not depend on the base point zy, since My € T'o(V).
If f is a weight zero Maass form, the value of the base point becomes important, and it can be
extracted from the preceding computation:
a+ i\/ d K
c

CTWEK ife>o0,

- mww¢@Q:<“ b)

. c —a
ﬂ—%ﬁﬁ if ¢ <0,

In this case Theorem 5.4.1 becomes the following.

THEOREM 6.3.1. Let K be a real quadratic field of discriminant dy-, and f a newform of even weight
2k > 0, trivial central character, and square-free level N, coprime to dg. Assume that all of the
primes dividing N split in K. If x is a character of the narrow class group of K, the central value
of the (completed) Rankin L-series L(s, 7y x m,) is given by

My 2y 2
St [ Heu s

veln A

L(1/2,7f x my) =

B
k—1/2
di

where the sum is over oriented optimal embeddings modulo conjugation by T'o(N). Recall that
B =4, unless f has weight 0, when § = 2.

Remark 6.3.2. When f is a Maass form of weight zero, normalized by means of (6.1.4), the differ-
ential \/di dz/Qw(z) appearing in Theorem 6.3.1 is the hyperbolic arc length differential over the
geodesic arc between zg and My zy.

Remark 6.3.3. When f is a holomorphic form of weight 2k > 0, the geodesic cycle integrals can be
easily computed, being values of the period mapping between f and the weight 2k modular symbols:
QIE,—l{O, Mg0}. Using the PeriodMapping algorithm implemented by William Stein in MAGMA,
and an algorithm implemented by Dokchitser [Dok04] in PARI for computing the special values,
we have checked that the formula in Theorem 6.3.1 is exact up to more than 10 decimal places for
a range of forms f of weight 2, 4, 6, and 8, taking for x the trivial character.

6.4 Connection with the Birch and Swinnerton-Dyer conjecture

For a weight-two newform f, the central value of the finite Rankin L-series can be written in terms
of the differential wy = 27if(2) dz on the compactified Riemann surface X = H/I'g(N):

1 2
— w
Vg /ax g
where o, € Hi(X,Z) ® C is the complex valued one-cycle
o= > X "),
VeEn /To(N)
862
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and where vy € Hy(X,Z) is the homology class of the closed geodesic on X obtained by projecting
the geodesic arc between zg and My zy.

Assume now that f is the newform associated to an elliptic curve E of conductor N defined
over Q. For simplicity, assume that F is a strong Weil curve for a modular parameterization II :
X — E, and that the Manin constant of this modular parameterization is 1 (which is conjectured
to be true in general), so that the pullback of a Neron differential wg is wy. If x = 1, the L-function
Lgn(s, 7y x m) equals the L-function L(s, E/K) of the base change of E to the real quadratic
field K. Assuming that the group E(K) is finite, and assuming the Birch and Swinnerton-Dyer
conjecture, we compare our formula with that given by the conjecture.

The action of complex conjugation on the cycle oy € H1(X,Z) is easy to compute, and yields
a1 € {y+7:v € H1(X,Z)}, where the bar denotes complex conjugation. Consider the pushforward
ag = I.(a1) € Hi(E,Z). From the previous observation, it follows that ax = mgag, where
mg € Z and ap is the class of F(R), that is a generator of {y +7% : v € Hy(F,Z)}. By the
assumption that the Manin constant is 1, it follows that

02

where Qp = faE wp is the real period of E.
Comparison with the formula conjectured by Birch and Swinnerton-Dyer yields

_ HP\NCP Qe T T I\

where ¢, are the Tamagawa factors for F/Q, and Sha denotes the Tate-Shafarevich group of E.
We have used the fact that all the primes dividing N split in K, which implies that the product of
the Tamagawa factors for E/K is the square of that for £/Q, and that F(K) = E(Q).

For example, when the conductor N is prime, it is a theorem of Manin that ¢y = |E(Q)|, and the
formula reduces to [Sha(E/K)| = m%. Since both integers have geometric meaning, this equality
suggests a deeper connection between elements of the Tate-Shafarevich group of E over K, and the
sum of geodesic cycles ag attached to K.

6.5 Equidistribution of closed geodesics on modular curves

As in the imaginary case discussed in [HMO06], the formula of Theorem 6.3.1 can be used in con-
junction with subconvexity bounds for L(1/2, 7 x 7)) when K and the unramified character x vary,
to prove equidistribution results for the closed geodesics appearing in the formula. The following
theorem generalizes Duke’s result on the equidistribution of closed geodesics attached to K as the
discriminant of K goes to infinity [Duk88].

THEOREM 6.5.1. Let N be a square-free positive integer and let K be a real quadratic field such
that all primes dividing N split in K, and such that the narrow class number hx < d‘}{ with
0 =1/23042. Let yx be any of the closed geodesics attached to K. Then the geodesics vx become
equidistributed on Xy(N), in the sense that for any convex set @ C Xo(N) with smooth boundary
we have

[enk| (),

vk |

as di tends to infinity, where p is the hyperbolic measure normalized by having total mass 1 and ||
is the hyperbolic length of the curve ~. Assuming Lindel6ff’s hypothesis instead of the subconvexity
result of [HMOG6], one can replace the exponent § by 1/4 — ¢, for any € > 0.

Remark 6.5.2. Since |vx| = 2In e, using Siegel’s theorem we can rephrase the theorem as follows:
‘long’ geodesics attached to quadratic fields K become equidistributed individually when dg tends
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e . , 1/2-6 1/4+e
to infinity, where ‘long’” means of length much greater than d (or much greater than dj’
assuming Lindel6ft’s hypothesis).

Remark 6.5.3. This is one of the few theorems available in the literature on the equidistribution
of individual closed geodesics on Xo(NN). The assumption on the class number growth seems to be
very often satisfied in view of existing heuristics for the growth of class numbers of real quadratic
fields [CL82, Hoo84]. Also note that an assumption of this type is necessary, due to the fact that
there are individual closed geodesics that do not become equidistributed in the limit, for example
those attached to the principal ideal class in certain families of real quadratic fields of large class
number and small fundamental unit. See [Sar05] for a concrete example and other interesting open
problems related to equidistribution of naturally defined sequences of closed geodesics.

Proof. By Weyl’s equidistribution criterion, it is enough to check that
[, (=) ds

K|
where 1) runs through a basis of eigenforms for the Laplacian acting on Xy(NN) and ds is the
hyperbolic arc differential. Let us parameterize the optimal embeddings ¥ and the quadratic forms
Q¢ by ideal classes a € Hg, and let v, be the geodesic arc from zy to Myzg for W = U,. If the

geodesic arc g corresponds to the ideal class ¢, then by the orthogonality relation for characters
of Hg we have

— 0 asdg — o0,

[y () ds
Ik |

- ZhKineK > 2 x(a)‘l/%cdl(z) ds. (6.5.1)

el a€lk

We show below that subconvexity bounds for L-functions from [HMO06] and [DFI02] imply that the
interior sums are much less than d}</2_6/ for &' = 1/23041, and that Lindel6ff’s hypothesis implies
that they are much less than d}</4+€ for every € > 0. The conclusion then follows from Remark 6.5.2.

We treat the discrete spectrum first. A basis for it consists of
{fq(dz) : q|N,d|(N/q), f; Maass newform of level g},

so it is enough to take 1)(z) = f;(dz). A change of variables ¢ = dz, together with the fact that
i(d)To(N)i(d)~r € To(q) for d | (N/q), shows that (see Remark 6.3.2):

_ dz _ dt
Z X 1(‘1’)/ fq(dz)m :\I;qx W) fq()

Vel T Yo, Q‘I’d (t’ 1)

where Wy € &, is the embedding i(d)Wi(d)~!. It is easy to see that the map from Ex to &, sending
U to U, maps a system of representatives of En/I'g(INV) to a system of representatives of &,/T'o(q),
and that the corresponding map on ideals (cf. Proposition 6.2.1) is multiplication by a fixed ideal
of Ok of norm d dividing dOf (recall that N is square free and that all of its divisors split in K).
It follows from Theorem 6.3.1 that

“Lp qdzds
Sk ()/Wf( )

veln

2
NG
= TKL(1/2,7rfq )

and the subconvexity bounds for L(1/2,7y, x m,) due to Harcos and Michel yield the bound of
%2_1/ 52% for the weighted sum, as in [HMO06, Theorem 6].

The continuous spectrum is spanned by Eisenstein of level N, and a similar discussion to [HMO06,
§6.4] reduces the problem to bounding the interior sum in (6.5.1) when ¢ (z) = E(z,1/2 + it) with
t real, the standard weight-zero Eisenstein series for the full modular group. The Weyl sum for this
Eisenstein series when x = 1 has been computed by Siegel [Sie61, ch. II, §3] (compare the first

much less than d
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two equations on pp. 113 and 115, modified to take into consideration that we are considering ideal
classes in the narrow sense). The computation for general x is similar, and it yields
5/21%(s/2)

3 x(@)! | B = dif = Lic(s.)
a€EH g a

where Ly (s, x) is the zeta function of K twisted by x. The following subconvexity bound is known

on the line Re(s) = 1/2 (see [DFI02, Theorem 2.6]): Lk (s, x) < |S|10d%4_6, for ¢ = 1/23041, and
the conclusion follows. O
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