Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T21:00:25.679Z Has data issue: false hasContentIssue false

Striatal function in relation to negative symptoms in schizophrenia

Published online by Cambridge University Press:  07 July 2011

S. Ehrlich*
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Germany
A. Yendiki
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
D. N. Greve
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
D. S. Manoach
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
B.-C. Ho
Affiliation:
Department of Psychiatry, University of Iowa, Iowa City, IA, USA
T. White
Affiliation:
Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
S. C. Schulz
Affiliation:
Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
D. C. Goff
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
R. L. Gollub
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
D. J. Holt
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
*
*Address for correspondence: S. Ehrlich, M.D., Massachusetts General Hospital/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Psychiatric Neuroimaging Research Program, CNY Building 120, Suite 100, Charlestown, MA 02129-2000, USA. (Email: stefan@nmr.mgh.harvard.edu)

Abstract

Background

Previous studies have suggested that motivational aspects of executive functioning, which may be disrupted in schizophrenia patients with negative symptoms, are mediated in part by the striatum. Negative symptoms have been linked to impaired recruitment of both the striatum and the dorsolateral prefrontal cortex (DLPFC). Here we tested the hypothesis that negative symptoms are associated primarily with striatal dysfunction, using functional magnetic resonance imaging (fMRI).

Method

Working-memory load-dependent activation and gray matter volumes of the striatum and DLPFC were measured using a region-of-interest (ROI) approach, in 147 schizophrenia patients and 160 healthy controls. In addition to testing for a linear relationships between striatal function and negative symptoms, we chose a second, categorical analytic strategy in which we compared three demographically and behaviorally matched subgroups: patients with a high burden of negative symptoms, patients with minimal negative symptoms, and healthy subjects.

Results

There were no differences in striatal response magnitudes between schizophrenia patients and healthy controls, but right DLPFC activity was higher in patients than in controls. Negative symptoms were inversely associated with striatal, but not DLPFC, activity. In addition, patients with a high burden of negative symptoms exhibited significantly lower bilateral striatal, but not DLPFC, activation than schizophrenia patients with minimal negative symptoms. Working memory performance, antipsychotic exposure and changes in gray matter volumes did not account for these differences.

Conclusions

These data provide further evidence for a robust association between negative symptoms and diminished striatal activity. Future work will determine whether low striatal activity in schizophrenia patients could serve as a reliable biomarker for negative symptoms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A, Rodenhiser, J, Printz, D, Zea-Ponce, Y, Gil, R, Kegeles, LS, Weiss, R, Cooper, TB, Mann, JJ, Van Heertum, RL, Gorman, JM, Laruelle, M (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences USA 97, 81048109.CrossRefGoogle ScholarPubMed
Alexander, GE, DeLong, MR, Strick, PL (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience 9, 357381.CrossRefGoogle ScholarPubMed
Andreasen, NC (1982). Negative symptoms in schizophrenia. Definition and reliability. Archives of General Psychiatry 39, 784788.CrossRefGoogle ScholarPubMed
Andreasen, NC (1983). Scale for the Assessment of Negative Symptoms (SANS). University of Iowa: Iowa City, IA.Google Scholar
Andreasen, NC (1984). Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa: Iowa City, IA.Google Scholar
Andreasen, NC (1987). Psychiatric Symptoms You Currently Have – Baseline (PSYCH-BASE). University of Iowa: Iowa City, IA.Google Scholar
Andreasen, NC, Pressler, M, Nopoulos, P, Miller, D, Ho, BC (2010). Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biological Psychiatry 67, 255262.CrossRefGoogle ScholarPubMed
Annett, M (1970). A classification of hand preference by association analysis. British Journal of Psychology 61, 303321.CrossRefGoogle ScholarPubMed
Arranz, MJ, de Leon, J (2007). Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Molecular Psychiatry 12, 707747.CrossRefGoogle ScholarPubMed
Ashby, FG, Ell, SW, Valentin, VV, Casale, MB (2005). FROST: a distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience 17, 17281743.CrossRefGoogle Scholar
Barch, DM, Dowd, EC (2010). Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin 36, 919934.CrossRefGoogle ScholarPubMed
Biver, F, Goldman, S, Luxen, A, Delvenne, V, De Maertelaer, V, De La Fuente, J, Mendlewicz, J, Lotstra, F (1995). Altered frontostriatal relationship in unmedicated schizophrenic patients. Psychiatry Research 61, 161171.CrossRefGoogle ScholarPubMed
Blanchard, JJ, Cohen, AS (2006). The structure of negative symptoms within schizophrenia: implications for assessment. Schizophrenia Bulletin 32, 238245.CrossRefGoogle ScholarPubMed
Blanchard, JJ, Horan, WP, Collins, LM (2005). Examining the latent structure of negative symptoms: is there a distinct subtype of negative symptom schizophrenia? Schizophrenia Research 77, 151165.CrossRefGoogle Scholar
Bolam, JP, Hanley, JJ, Booth, PA, Bevan, MD (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy 196, 527542.CrossRefGoogle ScholarPubMed
Buchanan, RW (2007). Persistent negative symptoms in schizophrenia: an overview. Schizophrenia Bulletin 33, 10131022.CrossRefGoogle ScholarPubMed
Buchsbaum, MS, Ingvar, DH, Kessler, R, Waters, RN, Cappelletti, J, van Kammen, DP, King, AC, Johnson, JL, Manning, RG, Flynn, RW, Mann, LS, Bunney, WE Jr., Sokoloff, L (1982). Cerebral glucography with positron tomography. Use in normal subjects and in patients with schizophrenia. Archives of General Psychiatry 39, 251259.CrossRefGoogle ScholarPubMed
Burbridge, JA, Barch, DM (2007). Anhedonia and the experience of emotion in individuals with schizophrenia. Journal of Abnormal Psychology 116, 3042.CrossRefGoogle ScholarPubMed
Callicott, JH, Egan, MF, Mattay, VS, Bertolino, A, Bone, AD, Verchinksi, B, Weinberger, DR (2003). Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. American Journal of Psychiatry 160, 709719.CrossRefGoogle ScholarPubMed
Callicott, JH, Mattay, VS, Bertolino, A, Finn, K, Coppola, R, Frank, JA, Goldberg, TE, Weinberger, DR (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex 9, 2026.CrossRefGoogle ScholarPubMed
Carlsson, A (1995). Neurocircuitries and neurotransmitter interactions in schizophrenia. International Clinical Psychopharmacology 10 (Suppl. 3), 2128.Google ScholarPubMed
Carpenter, WT Jr., Heinrichs, DW, Wagman, AM (1988). Deficit and nondeficit forms of schizophrenia: the concept. American Journal of Psychiatry 145, 578583.Google ScholarPubMed
Carter, C, Robertson, L, Nordahl, T, Chaderjian, M, Kraft, L, O'Shora-Celaya, L (1996). Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biological Psychiatry 40, 930932.CrossRefGoogle ScholarPubMed
Castner, SA, Goldman-Rakic, PS, Williams, GV (2004). Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology (Berlin) 174, 111125.CrossRefGoogle ScholarPubMed
Chakos, MH, Lieberman, JA, Bilder, RM, Borenstein, M, Lerner, G, Bogerts, B, Wu, H, Kinon, B, Ashtari, M (1994). Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. American Journal of Psychiatry 151, 14301436.Google ScholarPubMed
Chang, C, Crottaz-Herbette, S, Menon, V (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. NeuroImage 34, 12531269.CrossRefGoogle ScholarPubMed
Cho, RY, Ford, JM, Krystal, JH, Laruelle, M, Cuthbert, B, Carter, CS (2005). Functional neuroimaging and electrophysiology biomarkers for clinical trials for cognition in schizophrenia. Schizophrenia Bulletin 31, 865869.CrossRefGoogle ScholarPubMed
Crespo-Facorro, B, Paradiso, S, Andreasen, NC, O'Leary, DS, Watkins, GL, Ponto, LL, Hichwa, RD (2001). Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. Journal of the American Medical Association 286, 427435.CrossRefGoogle ScholarPubMed
Crow, TJ (1985). The two-syndrome concept: origins and current status. Schizophrenia Bulletin 11, 471486.CrossRefGoogle ScholarPubMed
Dollfus, S, Ribeyre, JM, Petit, M (1996). Family history and deficit form in schizophrenia. European Psychiatry 11, 260262.CrossRefGoogle ScholarPubMed
Dowd, EC, Barch, DM (2010). Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators. Biological Psychiatry 67, 902911.CrossRefGoogle ScholarPubMed
Dunnett, SB, Iversen, SD (1981). Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behavioural Brain Research 2, 189209.CrossRefGoogle ScholarPubMed
Ehrlich, S, Morrow, EM, Roffman, JL, Wallace, SR, Naylor, M, Bockholt, HJ, Lundquist, A, Yendiki, A, Ho, BC, White, T, Manoach, DS, Clark, VP, Calhoun, VD, Gollub, RL, Holt, DJ (2010). The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. NeuroImage 53, 992–1000.CrossRefGoogle ScholarPubMed
Fenton, WS, Wyatt, RJ, McGlashan, TH (1994). Risk factors for spontaneous dyskinesia in schizophrenia. Archives of General Psychiatry 51, 643650.CrossRefGoogle ScholarPubMed
Fischl, B, Salat, DH, Busa, E, Albert, M, Dieterich, M, Haselgrove, C, van der Kouwe, A, Killiany, R, Kennedy, D, Klaveness, S, Montillo, A, Makris, N, Rosen, B, Dale, AM (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341355.CrossRefGoogle ScholarPubMed
Foussias, G, Remington, G (2010). Negative symptoms in schizophrenia: avolition and Occam's razor. Schizophrenia Bulletin 36, 359369.CrossRefGoogle ScholarPubMed
Friedman, L, Glover, GH (2006 a). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33, 471481.CrossRefGoogle Scholar
Friedman, L, Glover, GH (2006 b). Report on a multicenter fMRI quality assurance protocol. Journal of Magnetic Resonance Imaging 23, 827839.CrossRefGoogle ScholarPubMed
Friedman, L, Stern, H, Brown, GG, Mathalon, DH, Turner, J, Glover, GH, Gollub, RL, Lauriello, J, Lim, KO, Cannon, T, Greve, DN, Bockholt, HJ, Belger, A, Mueller, B, Doty, MJ, He, J, Wells, W, Smyth, P, Pieper, S, Kim, S, Kubicki, M, Vangel, M, Potkin, SG (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping 29, 958972.CrossRefGoogle Scholar
Galderisi, S, Maj, M, Mucci, A, Cassano, GB, Invernizzi, G, Rossi, A, Vita, A, Dell'Osso, L, Daneluzzo, E, Pini, S (2002). Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: a multicenter study. American Journal of Psychiatry 159, 983990.CrossRefGoogle ScholarPubMed
Gard, DE, Kring, AM, Gard, MG, Horan, WP, Green, MF (2007). Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophrenia Research 93, 253260.CrossRefGoogle ScholarPubMed
Goghari, VM, Sponheim, SR, MacDonald, AW 3rd (2010). The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neuroscience and Biobehavioral Reviews 34, 468486.CrossRefGoogle ScholarPubMed
Goldman, PS, Rosvold, HE (1972). The effects of selective caudate lesions in infant and juvenile Rhesus monkeys. Brain Research 43, 5366.CrossRefGoogle ScholarPubMed
Grace, AA (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research Reviews 31, 330341.CrossRefGoogle ScholarPubMed
Gur, RE, Maany, V, Mozley, PD, Swanson, C, Bilker, W, Gur, RC (1998). Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. American Journal of Psychiatry 155, 17111717.CrossRefGoogle ScholarPubMed
Han, X, Jovicich, J, Salat, D, van der Kouwe, A, Quinn, B, Czanner, S, Busa, E, Pacheco, J, Albert, M, Killiany, R, Maguire, P, Rosas, D, Makris, N, Dale, A, Dickerson, B, Fischl, B (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage 32, 180194.CrossRefGoogle ScholarPubMed
Harvey, PO, Armony, J, Malla, A, Lepage, M (2010). Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. Journal of Psychiatric Research 44, 707716.CrossRefGoogle ScholarPubMed
Harvey, PO, Pruessner, J, Czechowska, Y, Lepage, M (2007). Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects. Molecular Psychiatry 12, 703, 767775.CrossRefGoogle ScholarPubMed
Heckers, S, Goff, D, Schacter, DL, Savage, CR, Fischman, AJ, Alpert, NM, Rauch, SL (1999). Functional imaging of memory retrieval in deficit vs nondeficit schizophrenia. Archives of General Psychiatry 56, 11171123.CrossRefGoogle ScholarPubMed
Herbener, ES, Song, W, Khine, TT, Sweeney, JA (2008). What aspects of emotional functioning are impaired in schizophrenia? Schizophrenia Research 98, 239246.CrossRefGoogle ScholarPubMed
Hollingshead, A (1965). Two Factor Index of Social Position. Yale University: New Haven, CT.Google Scholar
Honer, WG, Kopala, LC, Rabinowitz, J (2005). Extrapyramidal symptoms and signs in first-episode, antipsychotic exposed and non-exposed patients with schizophrenia or related psychotic illness. Journal of Psychopharmacology 19, 277285.CrossRefGoogle ScholarPubMed
Horan, WP, Green, MF, Kring, AM, Nuechterlein, KH (2006). Does anhedonia in schizophrenia reflect faulty memory for subjectively experienced emotions? Journal of Abnormal Psychology 115, 496508.CrossRefGoogle ScholarPubMed
Howes, OD, Kapur, S (2009). The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophrenia Bulletin 35, 549562.CrossRefGoogle ScholarPubMed
Jansma, JM, Ramsey, NF, van der Wee, NJ, Kahn, RS (2004). Working memory capacity in schizophrenia: a parametric fMRI study. Schizophrenia Research 68, 159171.CrossRefGoogle ScholarPubMed
Jenkinson, M, Bannister, P, Brady, M, Smith, S (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825841.CrossRefGoogle ScholarPubMed
Jensen, J, Willeit, M, Zipursky, RB, Savina, I, Smith, AJ, Menon, M, Crawley, AP, Kapur, S (2008). The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33, 473479.CrossRefGoogle ScholarPubMed
Joffe, MM, Rosenbaum, PR (1999). Invited commentary: propensity scores. American Journal of Epidemiology 150, 327333.CrossRefGoogle ScholarPubMed
Johnson, MR, Morris, NA, Astur, RS, Calhoun, VD, Mathalon, DH, Kiehl, KA, Pearlson, GD (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry 60, 1121.CrossRefGoogle ScholarPubMed
Jovicich, J, Czanner, S, Han, X, Salat, D, van der Kouwe, A, Quinn, B, Pacheco, J, Albert, M, Killiany, R, Blacker, D, Maguire, P, Rosas, D, Makris, N, Gollub, R, Dale, A, Dickerson, BC, Fischl, B (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage 46, 177192.CrossRefGoogle ScholarPubMed
Juckel, G, Schlagenhauf, F, Koslowski, M, Filonov, D, Wustenberg, T, Villringer, A, Knutson, B, Kienast, T, Gallinat, J, Wrase, J, Heinz, A (2006 a). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berlin) 187, 222228.CrossRefGoogle Scholar
Juckel, G, Schlagenhauf, F, Koslowski, M, Wustenberg, T, Villringer, A, Knutson, B, Wrase, J, Heinz, A (2006 b). Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage 29, 409416.CrossRefGoogle ScholarPubMed
Kegeles, LS, Abi-Dargham, A, Frankle, WG, Gil, R, Cooper, TB, Slifstein, M, Hwang, DR, Huang, Y, Haber, SN, Laruelle, M (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry 67, 231239.CrossRefGoogle ScholarPubMed
Keshavan, MS, Bagwell, WW, Haas, GL, Sweeney, JA, Schooler, NR, Pettegrew, JW (1994). Changes in caudate volume with neuroleptic treatment. Lancet 344, 1434.CrossRefGoogle ScholarPubMed
Kim, DI, Manoach, DS, Mathalon, DH, Turner, JA, Mannell, M, Brown, GG, Ford, JM, Gollub, RL, White, T, Wible, C, Belger, A, Bockholt, HJ, Clark, VP, Lauriello, J, O'Leary, D, Mueller, BA, Lim, KO, Andreasen, N, Potkin, SG, Calhoun, VD (2009). Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Human Brain Mapping 30, 37953811.CrossRefGoogle ScholarPubMed
Kirkpatrick, B, Buchanan, RW, McKenney, PD, Alphs, LD, Carpenter, WT Jr. (1989). The Schedule for the Deficit Syndrome: an instrument for research in schizophrenia. Psychiatry Research 30, 119123.CrossRefGoogle ScholarPubMed
Kirkpatrick, B, Galderisi, S (2008). Deficit schizophrenia: an update. World Psychiatry 7, 143147.CrossRefGoogle ScholarPubMed
Koch, K, Wagner, G, Nenadic, I, Schachtzabel, C, Schultz, C, Roebel, M, Reichenbach, JR, Sauer, H, Schlosser, RG (2008). Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study. Neuroscience 153, 5462.CrossRefGoogle ScholarPubMed
Kuperberg, GR, Deckersbach, T, Holt, DJ, Goff, D, West, WC (2007). Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Archives of General Psychiatry 64, 138151.CrossRefGoogle ScholarPubMed
Lahti, AC, Holcomb, HH, Medoff, DR, Weiler, MA, Tamminga, CA, Carpenter, WT Jr. (2001). Abnormal patterns of regional cerebral blood flow in schizophrenia with primary negative symptoms during an effortful auditory recognition task. American Journal of Psychiatry 158, 17971808.CrossRefGoogle ScholarPubMed
Landau, SM, Lal, R, O'Neil, JP, Baker, S, Jagust, WJ (2009). Striatal dopamine and working memory. Cerebral Cortex 19, 445454.CrossRefGoogle ScholarPubMed
Laruelle, M, Abi-Dargham, A (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. Journal of Psychopharmacology 13, 358371.CrossRefGoogle ScholarPubMed
Laruelle, M, Abi-Dargham, A, van Dyck, CH, Gil, R, D'Souza, CD, Erdos, J, McCance, E, Rosenblatt, W, Fingado, C, Zoghbi, SS, Baldwin, RM, Seibyl, JP, Krystal, JH, Charney, DS, Innis, RB (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences USA 93, 92359240.CrossRefGoogle ScholarPubMed
Lewis, SJ, Dove, A, Robbins, TW, Barker, RA, Owen, AM (2004). Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. European Journal of Neuroscience 19, 755760.CrossRefGoogle ScholarPubMed
Lieberman, JA, Tollefson, GD, Charles, C, Zipursky, R, Sharma, T, Kahn, RS, Keefe, RS, Green, AI, Gur, RE, McEvoy, J, Perkins, D, Hamer, RM, Gu, H, Tohen, M (2005). Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of General Psychiatry 62, 361370.CrossRefGoogle ScholarPubMed
Magaro, PA (1980). Cognition in Schizophrenia and Paranoia. Lawrence Erlbaum Associates: Hillsdale, NJ.Google Scholar
Manoach, DS (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research 60, 285298.CrossRefGoogle ScholarPubMed
Manoach, DS, Gollub, RL, Benson, ES, Searl, MM, Goff, DC, Halpern, E, Saper, CB, Rauch, SL (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry 48, 99–109.CrossRefGoogle ScholarPubMed
Manoach, DS, Halpern, EF, Kramer, TS, Chang, Y, Goff, DC, Rauch, SL, Kennedy, DN, Gollub, RL (2001). Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. American Journal of Psychiatry 158, 955998.CrossRefGoogle ScholarPubMed
Manoach, DS, Press, DZ, Thangaraj, V, Searl, MM, Goff, DC, Halpern, E, Saper, CB, Warach, S (1999). Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biological Psychiatry 45, 11281137.CrossRefGoogle ScholarPubMed
Middleton, FA, Strick, PL (2000). Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain and Cognition 42, 183200.CrossRefGoogle ScholarPubMed
Minzenberg, MJ, Laird, AR, Thelen, S, Carter, CS, Glahn, DC (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry 66, 811822.CrossRefGoogle ScholarPubMed
Mitsis, GD, Iannetti, GD, Smart, TS, Tracey, I, Wise, RG (2008). Regions of interest analysis in pharmacological fMRI: how do the definition criteria influence the inferred result? NeuroImage 40, 121132.CrossRefGoogle ScholarPubMed
Mittal, VA, Walker, EF (2007). Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents. Journal of Abnormal Psychology 116, 796803.CrossRefGoogle ScholarPubMed
Morey, RA, Inan, S, Mitchell, TV, Perkins, DO, Lieberman, JA, Belger, A (2005). Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Archives of General Psychiatry 62, 254262.CrossRefGoogle ScholarPubMed
Navari, S, Dazzan, P (2009). Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychological Medicine 39, 17631777.CrossRefGoogle ScholarPubMed
O'Brien, LM, Ziegler, DA, Deutsch, CK, Kennedy, DN, Goldstein, JM, Seidman, LJ, Hodge, S, Makris, N, Caviness, V, Frazier, JA, Herbert, MR (2006). Adjustment for whole brain and cranial size in volumetric brain studies: a review of common adjustment factors and statistical methods. Harvard Review of Psychiatry 14, 141151.CrossRefGoogle ScholarPubMed
Onn, SP, West, AR, Grace, AA (2000). Dopamine-mediated regulation of striatal neuronal and network interactions. Trends in Neuroscience 23, S48S56.CrossRefGoogle ScholarPubMed
Potkin, SG, Turner, JA, Brown, GG, McCarthy, G, Greve, DN, Glover, GH, Manoach, DS, Belger, A, Diaz, M, Wible, CG, Ford, JM, Mathalon, DH, Gollub, R, Lauriello, J, O'Leary, D, van Erp, TG, Toga, AW, Preda, A, Lim, KO (2009). Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophrenia Bulletin 35, 1931.CrossRefGoogle ScholarPubMed
Roffman, JL, Gollub, RL, Calhoun, VD, Wassink, TH, Weiss, AP, Ho, BC, White, T, Clark, VP, Fries, J, Andreasen, NC, Goff, DC, Manoach, DS (2008). MTHFR 677C→T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val→ Met. Proceedings of the National Academy of Sciences USA 105, 1757317578.CrossRefGoogle Scholar
Ross, DE, Kirkpatrick, B, Karkowski, LM, Straub, RE, MacLean, CJ, O'Neill, FA, Compton, AD, Murphy, B, Walsh, D, Kendler, KS (2000). Sibling correlation of deficit syndrome in the Irish study of high-density schizophrenia families. American Journal of Psychiatry 157, 10711076.CrossRefGoogle ScholarPubMed
Schlagenhauf, F, Juckel, G, Koslowski, M, Kahnt, T, Knutson, B, Dembler, T, Kienast, T, Gallinat, J, Wrase, J, Heinz, A (2008). Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology (Berlin) 196, 673684.CrossRefGoogle ScholarPubMed
Schultz, W (2002). Getting formal with dopamine and reward. Neuron 36, 241263.CrossRefGoogle ScholarPubMed
Seeman, P (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1, 133152.CrossRefGoogle ScholarPubMed
Siegel, BV Jr., Buchsbaum, MS, Bunney, WE Jr., Gottschalk, LA, Haier, RJ, Lohr, JB, Lottenberg, S, Najafi, A, Nuechterlein, KH, Potkin, SG (1993). Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. American Journal of Psychiatry 150, 13251336.Google ScholarPubMed
Simon, JJ, Biller, A, Walther, S, Roesch-Ely, D, Stippich, C, Weisbrod, M, Kaiser, S (2010). Neural correlates of reward processing in schizophrenia – relationship to apathy and depression. Schizophrenia Research 118, 154161.CrossRefGoogle ScholarPubMed
Smieskova, R, Fusar-Poli, P, Allen, P, Bendfeldt, K, Stieglitz, RD, Drewe, J, Radue, EW, McGuire, PK, Riecher-Rossler, A, Borgwardt, SJ (2009). The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? A systematic review. Current Pharmaceutical Design 15, 25352549.CrossRefGoogle ScholarPubMed
Smith, DA, Mar, CM, Turoff, BK (1998). The structure of schizophrenic symptoms: a meta-analytic confirmatory factor analysis. Schizophrenia Research 31, 5770.CrossRefGoogle ScholarPubMed
Smith, SM (2002). Fast robust automated brain extraction. Human Brain Mapping 17, 143155.CrossRefGoogle ScholarPubMed
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I, Flitney, DE, Niazy, RK, Saunders, J, Vickers, J, Zhang, Y, De Stefano, N, Brady, JM, Matthews, PM (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1), S208S219.CrossRefGoogle ScholarPubMed
Sternberg, S (1969). Memory-scanning: mental processes revealed by reaction-time experiments. American Scientist 57, 421457.Google ScholarPubMed
Tamminga, CA, Thaker, GK, Buchanan, R, Kirkpatrick, B, Alphs, LD, Chase, TN, Carpenter, WT (1992). Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Archives of General Psychiatry 49, 522530.CrossRefGoogle ScholarPubMed
Taylor, SF, Phan, KL, Britton, JC, Liberzon, I (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology 30, 984995.CrossRefGoogle ScholarPubMed
Wacker, J, Dillon, DG, Pizzagalli, DA (2009). The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. NeuroImage 46, 327337.CrossRefGoogle ScholarPubMed
Wager, TD, Smith, EE (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive Affective and Behavioral Neuroscience 3, 255274.CrossRefGoogle ScholarPubMed
Walter, H, Kammerer, H, Frasch, K, Spitzer, M, Abler, B (2009). Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology (Berlin) 206, 121132.CrossRefGoogle ScholarPubMed
White, T, Magnotta, VA, Bockholt, HJ, Williams, S, Wallace, S, Ehrlich, S, Mueller, BA, Ho, BC, Jung, RE, Clark, VP, Lauriello, J, Bustillo, JR, Schulz, SC, Gollub, RL, Andreasen, NC, Calhoun, VD, Lim, KO (2010). Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study. Schizophrenia Bulletin 37, 222232.CrossRefGoogle Scholar
Whitfield-Gabrieli, S (2009). Artifact Detection and QA Manual (http://web.mit.edu/swg/art/art.pdf).Google Scholar
Wilkinson, G (1993). WRAT-3: Wide Range Achievement Test. Wide Range, Inc.: Wilmington, DE.Google Scholar
Wolkin, A, Jaeger, J, Brodie, JD, Wolf, AP, Fowler, J, Rotrosen, J, Gomez-Mont, F, Cancro, R (1985). Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. American Journal of Psychiatry 142, 564571.Google ScholarPubMed
Woolrich, MW, Ripley, BD, Brady, M, Smith, SM (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage 14, 13701386.CrossRefGoogle ScholarPubMed
Yendiki, A, Greve, DN, Wallace, S, Vangel, M, Bockholt, J, Mueller, BA, Magnotta, V, Andreasen, N, Manoach, DS, Gollub, RL (2010). Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices. NeuroImage 53, 119131.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ehrlich Supplementary Material

Ehrlich Supplementary Material

Download Ehrlich Supplementary Material(File)
File 88.1 KB