Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T14:08:02.527Z Has data issue: false hasContentIssue false

Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae

Published online by Cambridge University Press:  06 April 2009

W. Haas
Affiliation:
Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
M. Körner
Affiliation:
Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
E. Hutterer
Affiliation:
Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
M. Wegner
Affiliation:
Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
B. Haberl
Affiliation:
Institut für Zoologie I, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany

Summary

Finding and recognition of snail second intermediate hosts was studied in cercariae of 3 echinostome species. The cercariae of the 3 species accumulated in snail-conditioned water (SCW) with 2 types of orientation mechanisms and responded to different small molecular weight (< 500 Da) components of SCW. Pseudechinoparyphium echinatum and Echinostoma revolutum cercariae returned by swimming an arc, when swimming in decreasing concentration gradients of SCW (turnback swimming). The stimulating cues of SCW were identified as hydrophilic organic molecules, probably posessing amino groups. Amino acids contributed to the attractivity of SCW, at least in P. echinatum, but they could not account for the complete attractivity of SCW. Hypoderaeum conoideum were directed chemotactically and swam along increasing concentration gradients of small peptides within SCW, but in decreasing SCW gradients they showed no turn-back swimming. Chemotactic orientation in H. conoideum only started 1 h after emission, which may assist the cercariae to leave the immediate area of their first intermediate host snails and to disperse. Attachments occurred specifically to snail hosts in the 3 species and were stimulated by macromolecular mucus compounds, probably mainly by viscoelastic properties of the mucus. The results of this study show, that host-finding mechanisms and the stimulating host cues of snail invading echinostome cercariae differ considerably from those of schistosome miracidia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Christensen, N. O. (1980). A review of the influence of host- and parasite-related factors and environmental conditions on the host-finding capacity of the trematode miracidium. Acta Tropica 37, 303–18.Google ScholarPubMed
Christensen, N. O., Frandsen, F. & Roushdy, M. Z. (1980). The influence of environmental conditions and parasite- intermediate host-related factors on the transmission of Echinostoma liei. Zeitschrift für Parasitenkunde 63, 4763.CrossRefGoogle Scholar
Denny, M. (1983). Molecular biomechanics of molluscan mucous secretions. In The Mollusca, Vol. 1 (ed. Hochachka, P. W.), pp. 431–65. New York: Academic Press.Google Scholar
Disko, R. & Weber, L. (1979). The attraction of miracidia of Schistosoma mansoni to the snail Biomphalaria glabrata. Zentralblatt für Bakteriologie 263, 197.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Reben, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–6.CrossRefGoogle Scholar
Evans, N. A. & Gordon, D. M. (1983 a). Experimental observations on the specificity of Echinoparyphium recurvatum toward second intermediate hosts. Zeitschrift für Parasitenkunde 69, 217–22.CrossRefGoogle Scholar
Evans, N. A. & Gordon, D. M. (1983 b). Experimental studies on the transmission dynamics of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87, 167–74.CrossRefGoogle Scholar
Evans, N. A., Whitfield, P. J. & Dobson, A. P. (1981). Parasite utilization of a host community: the distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of mollusc at Harting Pond, Sussex. Parasitology 83, 112.CrossRefGoogle Scholar
Fraenkel, G. S. & Gunn, D. L. (1961). The Orientation of Animals. Kineses, Taxes and Compass Reactions, 2nd Edn. New York: Dover Publications.Google Scholar
Fried, B. & King, W. (1989). Attraction of Echinostoma revolutum cercariae to Biomphalaria glabrata dialysate. Journal of Parasitology 75, 55–7.CrossRefGoogle Scholar
Graefe, G. W. & Burkert, D. G. (1972). Zur Lokomotionsmechanik von Diplostomatiden- und Echinostomatiden-Cercarien (Trematoda). Zoologischer Anzeiger, Leipzig? 188, 366–9.Google Scholar
Graser, T. A., Godel, H. G., Albers, S., Födl, P. & Fürst, P. (1985). An ultra rapid and sensitive high-perfomance liquid chromatographic method for determination of tissue and plasma free amino acids. Analytical Biochemistry 151, 142–52.CrossRefGoogle Scholar
Haas, W. (1992). Physiological analysis of cercarial behavior. Journal of Parasitology 78, 243–55.CrossRefGoogle ScholarPubMed
Haas, W. (1994). Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology (in the press).CrossRefGoogle ScholarPubMed
Haas, W., Gui, M., Haberl, B. & Ströbel, M. (1991). Miracidia of Schistosoma japonicum: approach and attachment to the snail host. Journal of Parasitology 77, 509–13.CrossRefGoogle Scholar
Haberl, B. & Haas, W. (1992). Miracidium of Schistosoma mansoni: a macromolecular glycoconjugate as signal for the behaviour after contact with the snail host. Comparative Biochemistry and Physiology 101A, 329–33.CrossRefGoogle ScholarPubMed
Haberl, B., Kalbe, M., Fuchs, H., Ströbel, M., Schmalfuss, G. & Haas, W. (1995). Schistosoma mansoni and S. haematobium. Miracidial host-finding behavior is stimulated by macromolecules. International Journal for Parasitology (in the press).CrossRefGoogle Scholar
Huffman, J. E. & Fried, B. (1990). Echinostoma and Echinostomiasis. Advances in Parasitology 29, 215–69.CrossRefGoogle ScholarPubMed
Kanev, I. (1985). On the morphology, biology, ecology and taxonomy of E. revolutum group (Trematoda: Echinostomatidae: Echinostoma). Ph. D. dissertation, University of Sofia, Sofia, Bulgaria.Google Scholar
Kanev, I. & Vassilev, I. (1986). On the identity of Echinoparyphium aconiatum Dietz 1909 ( = Pseudechinoparyphium echinatum G. and Sp. Nov. Comb.). Proceedings of the 4th Helminthological Symposium, The High Tartras, Czechoslovakia, p. 4.Google Scholar
Macinnis, A. J. (1965). Responses of Schistosoma mansoni miracidia to chemical attractants. Journal of Parasitology 51, 731–46.CrossRefGoogle ScholarPubMed
Macinnis, A. J. (1976). How parasites find hosts: Some thoughts on the inception of host-parasite integration. In Ecological Aspects of Parasitology, (ed. Kennedy, C. R.), pp. 320. Amsterdam: North-Holland Publications.Google Scholar
Macinnis, A. J., Bethel, W. M. & Cornford, E. M. (1974). Identification of chemicals of snail origin that attract Schistosoma mansoni miracidia. Nature, London 248, 361–3.CrossRefGoogle ScholarPubMed
Mason, P. R. (1977). Stimulation of the activity of Schistosoma mansoni miracidia by snail-conditioned water. Parasitology 75, 325–38.CrossRefGoogle ScholarPubMed
Mason, P. R. & Fripp, P. J. (1977). Chemical stimulation of Schistosoma mansoni miracidial activity. Zeitschrift für Parasitenkunde 53, 287–95.CrossRefGoogle ScholarPubMed
Mccarthy, A. M. (1990). The influence of second intermediate host dispersion pattern upon the transmission of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 101, 43–7.CrossRefGoogle ScholarPubMed
Mccarthy, A. M. & Kanev, I. (1990). Pseudechinoparyphium echinatum (Digenea: Echinostomatidae): experimental observations on cercarial specificity toward second intermediate hosts. Parasitology 100, 423–8.CrossRefGoogle ScholarPubMed
Saladin, K. S. (1979). Behavioral parasitology and perspectives on miracidial host-finding. Zeitschrift für Parasitenkunde 60, 197210.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. 2nd Edn. Cambridge: Cambridge University Press.Google Scholar
Spiro, R. G. (1966). Analysis of carbohydrates found in glycoproteins. In Methods in Enzymology, Vol. 8 (ed. Neufeld, E. F.), pp. 323. New York: Academic Press.Google Scholar
Sponholtz, G. M. & Short, R. B. (1976). Schistosoma mansoni miracidia: Stimulation by calcium and magnesium. Journal of Parasitology 62, 155–7.CrossRefGoogle ScholarPubMed
Stibbs, H. H., Chernin, E., Ward, S. & Karnovsky, M. L. (1976). Magnesium emitted by snails alters swimming behaviour of Schistosoma mansoni miracidia. Nature, London 260, 702–3.CrossRefGoogle ScholarPubMed
Sukhdeo, M. V. K. & Mettrick, D. F. (1987). Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 73144.CrossRefGoogle ScholarPubMed
Thomas, J. D. & Eaton, p. (1993). Amino acid medleys of snail origin as possible sources of information for conspecifics, schistosome miracidia and predators. Comparative Biochemistry and Physiology 106C, 781–96.Google Scholar