Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T13:06:01.774Z Has data issue: false hasContentIssue false

Rare Earth Nanocomposites Based on Chitosan Platforms for Biological Applications

Published online by Cambridge University Press:  29 May 2012

Zannatul Yasmin
Affiliation:
Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
Maogen Zhang
Affiliation:
Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
Waldemar Gorski
Affiliation:
Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
Saher Maswadi
Affiliation:
Ophthalmology, University of Texas Health Science Center-San Antonio, San Antonio, TX 78229, U.S.A.
Randolph Glickman
Affiliation:
Ophthalmology, University of Texas Health Science Center-San Antonio, San Antonio, TX 78229, U.S.A.
Kelly L. Nash
Affiliation:
Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.
Get access

Abstract

Chitosan (CHIT), a natural biopolymer, has established its applicability in numerous studies including, tissue scaffolds, topical antimicrobial agents, glucose biosensors and drug delivery platforms. Among these applications, biosensors utilizing CHIT has been championed due its excellent film-forming ability, biocompatibility, good adhesion, non-toxicity, and susceptibility to chemical modification due to the presence of plentiful amino groups and hydroxyl groups. The challenge in development of many biosensing materials is that they should offer robust and tunable characteristics (fluorescence, magnetic, thermal, etc.) while remaining biocompatible. In this work, a facile method was developed to synthesize biocompatible hetero-nanoparticles which inherently display multifunctionality based on a few interchangeable components. As an example, we present a system composed of rare earth metal oxide (REMO) nanoparticles, Er doped Y2O3, with the attachment of gold nanostructures using CHIT. The resulting REMO@CHIT@Au0 hybrid nanoparticles are capable of displaying tunable optical properties due to the surface plasmon resonance of the gold nanoparticles useful to photoacoustic applications. An overview of the nanostructure components are given followed by morphological and spectroscopic analyses. The results of the characterizations are the focus of our future work towards the applicability of these systems to biological sensing, detection and contrast agents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blasse, G and Grabmaier, B C 1994 Luminescent Materials (Berlin: Springer).10.1007/978-3-642-79017-1Google Scholar
2. Henderson, B and Imbusch, G F 1989 Optical Spectroscopy in Inorganic Solids (Oxford: Oxford University Press).Google Scholar
3. Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., Julian-Lopez, B. and Escribano, P., Chemical Society Reviews 40 (2), 536549 (2011).10.1039/C0CS00069HGoogle Scholar
4. Evans, E. H., Day, J. A., Palmer, C. D. and Smith, C. M. M., Journal of Analytical Atomic Spectrometry 26 (6), 11151141 (2011).10.1039/c1ja90020jGoogle Scholar
5. Zhang, D., Wang, X., Qiao, Z.-a., Tang, D., Liu, Y. and Huo, Q., The Journal of Physical Chemistry C 114 (29), 1250512510 (2010).10.1021/jp1042156Google Scholar
6. Wang, G., Peng, Q. and Li, Y., Accounts of Chemical Research 44 (5), 322332 (2011).10.1021/ar100129pGoogle Scholar
7. Khlebtsov, B., Panfilova, E., Khanadeev, V., Bibikova, O., Terentyuk, G., Ivanov, A., Rumyantseva, V., Shilov, I., Ryabova, A., Loshchenov, V. and Khlebtsov, N. G., ACS Nano 5 (9), 70777089 (2011).10.1021/nn2017974Google Scholar
8. Yan, B., Zhao, Y. and Li, Y.-J., Photochemistry and Photobiology 87 (4), 757765 (2011).10.1111/j.1751-1097.2011.00920.xGoogle Scholar
9. Xu, Z., Gao, Y., Huang, S., Ma, P. a., Lin, J. and Fang, J., Dalton Transactions 40 (18), 48464854 (2011).10.1039/c1dt10162eGoogle Scholar
10. Cui, X., She, J., Gao, C., Cui, K., Hou, C., Wei, W. and Peng, B., Chemical Physics Letters 494 (1–3), 6063 (2010).10.1016/j.cplett.2010.05.070Google Scholar
11. Li, Z., Wang, L., Wang, Z., Liu, X. and Xiong, Y., The Journal of Physical Chemistry C 115 (8), 32913296 (2011).10.1021/jp110603rGoogle Scholar
12. Som, T. and Karmakar, B., Nano Research 2 (8), 607616 (2009).10.1007/s12274-009-9061-4Google Scholar
13. Wang, Y., Tu, L., Zhao, J., Sun, Y., Kong, X. and Zhang, H., The Journal of Physical Chemistry C 113 (17), 71647169 (2009).10.1021/jp9003399Google Scholar
14. Schietinger, S., Aichele, T., Wang, H.-Q., Nann, T. and Benson, O., Nano Letters 10 (1), 134138 (2009).10.1021/nl903046rGoogle Scholar
15. Miyama, T. and Yonezawa, Y., Langmuir 20 (14), 59185923 (2004).10.1021/la040002nGoogle Scholar
16. Bhumkar, D., Joshi, H., Sastry, M. and Pokharkar, V., Pharmaceutical Research 24 (8), 14151426 (2007).10.1007/s11095-007-9257-9Google Scholar
17. Chen, Q., Wang, X., Chen, F., Zhang, Q., Dong, B., Yang, H., Liu, G. and Zhu, Y., Journal of Materials Chemistry 21 (21), 76617667 (2011).10.1039/c0jm04468gGoogle Scholar
18. Jianshe, W., Shuhui, B., Limei, S., Jin, H., Xinhou, L. and Zhen, Z., Nanotechnology 17 (46), 1527 (2006).Google Scholar
19. Duff, D. G., Baiker, A. and Edwards, P. P., Langmuir 9 (9), 23012309 (1993).10.1021/la00033a010Google Scholar
20. Gruber, J. B., Sardar, D. K., Nash, K. L., Yow, R. M., Gorski, W. and Zhang, M., Journal of Applied Physics 101 (11), 113116–113116-113116 (2007).10.1063/1.2739316Google Scholar
21. Jiang, H., Liang, J., Grant, J. T., Su, W., Bunning, T. J., Cooper, T. M. and Adams, W. W., Macromolecular Chemistry and Physics 198 (5), 15611578 (1997).10.1002/macp.1997.021980519Google Scholar
22. Page, Leland, Maswadi, Saher and Glickman, Randolph D., Proc. SPIE 7899, 78993I (2011).10.1117/12.875403Google Scholar