Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T09:26:04.082Z Has data issue: false hasContentIssue false

GENETIC RELATIONSHIPS AMONG CHORISTONEURA SPECIES (LEPIDOPTERA: TORTRICIDAE) IN NORTH AMERICA AS REVEALED BY ISOZYME STUDIES

Published online by Cambridge University Press:  31 May 2012

G.T. Harvey
Affiliation:
Natural Resources Canada, Canadian Forest Service - Sault Ste. Marie, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

Allozymes at several polymorphic loci were assayed in larval collections of 12 recognized species and two possible new species of Choristoneura and two species of Archips. Most of the 48 collections came from high density populations, and those of C. fumiferana, C. occidentalis, and C. pinus represented much of the geographic range of these species. Mean percentage heterozygosity ranged from 2.0 to 18.6%, based on nine polymorphic loci. Three loci are sex-linked in C. fumiferana, two in C. pinus and C. occidentalis and probably in some other members of the group. Allozymes of aspartate transaminase (AAT-1) were most varied among the species and permit identification of individual C. fumiferana in better than 95% of cases. Among the group of coniferophagous Choristoneura species genetic distances were small (max. Nei = 0.232); C. fumiferana was the most distinct species. Wagner trees based on modified Rogers’ distances supported the above conclusions but indicated that separations among C. biennis, C. orae, C. occidentalis, C. carnana, C. subretiniana, and the two new species of Choristoneura were very small and probably below the species level, based on the allozymes measured.

Résumé

Les allozymes de plusieurs locus polymorphes ont été analysés au sein d’échantillons de larves appartenant à 12 espèces connues et deux espèces peut-être nouvelles de Choristoneura et à deux espèces d’Archips. La majorité des 48 récoltes proviennent de populations très denses et les récoltes de C. fumiferana, C. occidentalis et C. pinus représentent une grande partie de la répartition géographique de ces espèces. Le pourcentage moyen d’hétérozygotie à neuf locus polymorphes a été évalué à 2,0–18,6%. Trois locus sont liés au sexe chez C. fumiferana, deux chez C. pinus et C. occidentalis et probablement aussi chez d’autres membres du groupe. Ce sont les allozymes de l’aspartate transaminase (AAT-1) qui varient le plus d’une espèce à l’autre et ils permettent de reconnaître les individus de C. fumiferana dans plus de 95% des cas. Chez les groupes d’espèces de Choristoneura des conifères, les distances génétiques sont faibles (max. Nei = 0,232); C. fumiferana est l’espèce la plus distinctive. Les arbres de Wagner basés sur les distances modifiés de Rogers confirment ces assertions mais indiquent que la séparation entre C. biennis, C. orae, C. occidentalis, C. carnana, C. subretiniana et les deux nouvelles espèces de Choristoneura est ténue et probablement sous le niveau spécifique d’après les allozymes mesurés.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J., Powell, J.R., Tracey, M.L., Mourão, C.A., and Pérez-Salas, S.. 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113139.CrossRefGoogle ScholarPubMed
Brussard, P.F., Ehrlich, P.R., Wilcox, D.D., and Wright, J.. 1985. Genetic distances and the taxonomy of checkerspot butterflies (Nymphalidae: Nymphalininae). Journal of the Kansas Entomological Society 58: 403412.Google Scholar
Castrovillo, P.J. 1982. Interspecific and Intraspecific Genetic Comparisons of North American Spruce Budworms (Choristoneura spp.). Ph.D. thesis, University of Idaho, Moscow, ID. 154 pp.Google Scholar
Cavalli-Sforza, L.L., and Edwards, A.W.F.. 1967. Phylogenetic analysis: Models and estimation procedures. Evolution 21: 550570.CrossRefGoogle ScholarPubMed
Forest Insect and Disease Survey (Canada). 19701980. Annual Report of the Forest Insect and Disease Survey. Canadian Forestry Service, Ottawa, Ont.Google Scholar
Forest Insect and Disease Survey (Canada). 19811989. Forest Insect and Disease Conditions in Canada. Canadian Forest Service, Ottawa, Ont.Google Scholar
Gooding, R.H., Rolseth, B.M., Byers, J.R., and Herle, C.E.. 1992. Electrophoretic comparisons of pheromotypes of the dingy cutworm, Feltia jaculifera (Gn.) (Lepidoptera: Noctuidae). Canadian Journal of Zoology 70: 7986.CrossRefGoogle Scholar
Gray, T.C., and Gries, G.. 1993. Sex pheromone components of an undescribed Choristoneura species (Lepidoptera: Tortricidae) on Lodgepole Pine in British Columbia. Journal of the Entomological Society of British Columbia 90: 1318.Google Scholar
Gray, T.C., Shepherd, R.F., and Harvey, G.T.. 1995. Incidence of spicules on the aedeagi of Choristoneura fumiferana, C. biennis, and C. unidentified species (Lepidoptera: Tortricidae). The Canadian Entomologist 127: 161166.CrossRefGoogle Scholar
Gray, T.C., and Slessor, K.N.. 1989. Morphology, life history and identification of sex pheromone components of an undescribed species of Choristoneura (Lepidoptera: Tortricidae) on Scots Pine in British Columbia. Journal of the Entomological Society British Columbia 86: 3947.Google Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 102: 11111117.CrossRefGoogle Scholar
Harvey, G.T. 1985. The taxonomy of coniferophagous Choristoneura (Lepidoptera: Tortricidae): A review. pp. 16–59 in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworm Research: Proceedings of the CANUSA Spruce Budworms Research Symposium, Bangor, Maine, 16–20 September 1984. Bangor, Maine. Supply and Services, Ottawa, Canada. 527 pp.Google Scholar
Harvey, G.T. 1996. Population genetics of the spruce budworm, Choristoneura fumiferana (Clem.) Freeman (Lepidoptera: Tortricidae), in relation to geographical and population density differences. The Canadian Entomologist 128: 219243.CrossRefGoogle Scholar
Harvey, G.T., and Sohi, S.S.. 1985. Isozyme characterization of 28 cell lines from five insect species. Canadian Journal of Zoology 63: 22702276.CrossRefGoogle Scholar
Harvey, G.T., and Stehr, G.. 1967. On coniferophagous species of Choristoneura (Lepidoptera: Tortricidae) in North America. III. Some characters of immature forms helpful in identification of species. The Canadian Entomologist 99: 464481.CrossRefGoogle Scholar
Jennings, M.J., and Philipp, D.P.. 1992. Genetic variation in the longear sunfish (Lepomis megalotis). Canadian Journal of Zoology 70: 16731680.CrossRefGoogle Scholar
Levene, H. 1949. On a matching problem arising in genetics. Annals of Mathamatical Statistics 20: 9194.CrossRefGoogle Scholar
May, B., Leonard, D.E., and Vadas, R.L.. 1977. Electophoretic variation and sex linkage in spruce budworm. Journal of Heredity 68: 355359.CrossRefGoogle Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Pashley, D.P., Johnson, S.J., and Sparks, A.M.. 1985. Genetic population structure of migratory moths: The fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 78: 756762.CrossRefGoogle Scholar
Poulik, M.D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature (London) 180: 14771479.Google Scholar
Powell, J.A. 1980. Nomenclature of Nearctic Conifer-feeding Choristoneura (Lepidoptera: Tortricidae). Historical Review and Present Status. Canada/U.S. Spruce Budworms Program-West. U.S.D.A. Forest Service General Technical Report PNW–100: 18 pp.Google Scholar
Powell, J.A. 1983. Tortricoidea. pp. 31–42 in Hodges, R.W., Dominick, T., Davis, D.R., Ferguson, D.C., Franclemont, J.G., Monroe, E.G., and Powell, J.A. (Eds.), Check List of the Lepidoptera of North America North of Mexico. E.W. Classey Ltd. and the Wedge Entomological Research Foundation, London. 284 pp.Google Scholar
Powell, J.A. (Ed.). 1996. Biosystematic Studies of Conifer-feeding Choristoneura (Lepidoptera: Tortricidae) in the Western United States. University of California Publications in Entomology 115: 284 pp.Google Scholar
Powell, J.A., and DeBenedictis, J.A.. 1996. Evolutionary interpretation, taxonomy and nomenclature. In Powell, J.A. (Ed.), Biosystematic Studies of Conifer-feeding Choristoneura (Lepidoptera: Tortricidae) in the Western United States. University of California Publications in Entomology 115: 284 pp.Google Scholar
Shepherd, R.F., Gray, T.G., and Harvey, G.T.. 1995. Geographical distribution of Choristoneura species (Lepidoptera: Tortricidae) feeding on Abies, Picea, and Pseudotsuga in western Canada and Alaska. The Canadian Entomologist 127: 813830.CrossRefGoogle Scholar
Sperling, F.A.H. 1994. Sex-linked genes and species differences in Lepidoptera. The Canadian Entomologist 126: 807818.CrossRefGoogle Scholar
Sperling, F.A.H., and Hickey, D.A., 1994. Mitochondrial DNA sequence viaration in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution 11: 656665.Google ScholarPubMed
Stehr, G. 1955. Brown female—a sex-linked sex-limited character. Journal of Heredity 46: 263266.CrossRefGoogle Scholar
Stehr, G. 1959. Hemolymph polymorphism in a moth and the nature of sex-controlled inheritance. Evolution 13: 537560.CrossRefGoogle Scholar
Stehr, G. 1964. The determination of sex and polymorphism in microevolution. The Canadian Entomologist 96: 418428.CrossRefGoogle Scholar
Stock, M.W., and Castrovillo, P.J.. 1981. Genetic relationships among representative populations of five Choristoneura species: C. occidentalis, C. retiniana, C. biennis, C. lambertiana and C. fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 113: 857865.CrossRefGoogle Scholar
Swofford, D.L. 1981. On the utility of the Distance Wagner Procedure. pp. 25–43 in Funk, V.A., and Brooks, D.R. (Eds.), Advances in Cladistics. Proceedings of the First Meeting of the Willi Hennig Society. The New York Botanical Garden, Bronx, NY. 232 pp.Google Scholar
Swofford, D.L., and Selander, R.B.. 1981. BIOSYS-1: A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281283.CrossRefGoogle Scholar
Wright, S. 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago, IL. 580 pp.Google Scholar