Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T18:06:23.397Z Has data issue: false hasContentIssue false

Simultaneous Pellian equations

Published online by Cambridge University Press:  24 October 2008

R. G. E. Pinch
Affiliation:
Emmanuel College, Cambridge CB2 3AP

Extract

In this paper we describe a method for finding integer solutions of simultaneous Pellian equations, that is, integer triples (x, y, z) satisfying equations of the form

where the coefficients a, b, c, d, f are integers and we assume that a, c, and ac are not square.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, A.. Linear forms in the logarithms of algebraic numbers. Mathematika 15 (1968), 204216.CrossRefGoogle Scholar
[2]Baker, A.. Transcendental Number Theory (Cambridge University Press, 1975).CrossRefGoogle Scholar
[3]Baker, A.. The theory of linear forms in logarithms. Chapter 1 in [5].Google Scholar
[4]Baker, A. and Davenport, H.. On the equations 3x 2 − 2 = y 2 and 8x 2 − 7 = z 2. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129137.CrossRefGoogle Scholar
[5]Baker, A. and Masser, D. W. (eds). Transcendence Theory: Advances and Applications (Academic Press, 1977).Google Scholar
[6]Beukers, F.. The multiplicity of binary sequences. Compositio Math. 40 (1980), 251267.Google Scholar
[7]Bourne, S. R., Birrell, A. D. and Walker, I.. Algol Reference Manual (Cambridge University Computer Laboratory, 1975).Google Scholar
[8]Brown, E.. Sets in which xy + k is always a square. Math. Comp. 45 (1985), 613620.Google Scholar
[9]Grinstead, C. M.. On a method of solving a class of Diophantine equations. Math. Comp. 32 (1978), 936940.CrossRefGoogle Scholar
[10]Kiss, P.. On common terms of linear recurrences. Acta Math. Acad. Sci. Hungar. 40 (1982), 119123.CrossRefGoogle Scholar
[11]Loxton, J. H. and van der Poorten, A. J.. On the growth of recurrence sequences. Math. Proc. Cambridge Philos. Soc. 81 (1977), 369376.CrossRefGoogle Scholar
[12]Mignotte, M.. A note on linear recursive sequences. J. Austral. Math. Soc. 20 (1975), 242244.CrossRefGoogle Scholar
[13]Mignotte, M.. Intersection des images de certaines suites récurrentes linéaires. Theoret. Comput. Sci. 7 (1978), 117122.CrossRefGoogle Scholar
[14]Mignotte, M.. Une extension du théorème de Skolem-Mahler. C. R. Acad. Sci. Paris (A) 288 (1979), 233235.Google Scholar
[15]Nagell, T.. Introduction to number theory (Almqvist & Wiksell, 1951).Google Scholar
[16]Nagell, T., Selberg, A., Selberg, S. and Thalberg, K. (eds.) Selected Mathematical Papers of Axel Thue (Oslo Universitetsforlaget, 1977).Google Scholar
[17]Pethö, A.. Full cubes in the Fibonacci sequence. Publ. Math. Debrecen 30 (1983), 117127.CrossRefGoogle Scholar
[18]Pinch, R. G. E.. Elliptic curves with good reduction away from 2: III. (Submitted.)Google Scholar
[19]Shorey, T. N. and Tijdeman, R.. Exponential Diophantine Equations. Cambridge tracts in mathematics 87 (Cambridge University Press, 1986).CrossRefGoogle Scholar
[20]Siegel, C. L.. Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. 1929. 1.Google Scholar
[21]Stewart, C. L.. Primitive divisors of Lucas and Lehmer numbers. Chapter 4 in [5].Google Scholar
[22]Thue, A.. Über Annäherungenswerte algebraischen Zahlen. J. reine angew. Math. 135 (1909), 284305. (= [16] no. 12, pp. 232254.)CrossRefGoogle Scholar
[23]Waldschmidt, M.. A lower bound for linear forms in logarithms. Acta Arith. 37 (1980), 257283.CrossRefGoogle Scholar
[24]Zagier, D.. Large integral points on elliptic curves. Math. Comp. 48 (1987), 425436CrossRefGoogle Scholar