Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T18:33:15.367Z Has data issue: false hasContentIssue false

Materials Challenges Facing Electrical Energy Storage

Published online by Cambridge University Press:  31 January 2011

M. Stanley Whittingham
Affiliation:
Binghamton University, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the past two decades, the demand for the storage of electrical energy has mushroomed both for portable applications and for static applications. As storage and power demands have increased predominantly in the form of batteries, the system has evolved. However, the present electrochemical systems are too costly to penetrate major new markets, still higher performance is required, and environmentally acceptable materials are preferred. These limitations can be overcome only by major advances in new materials whose constituent elements must be available in large quantities in nature; nanomaterials appear to have a key role to play. New cathode materials with higher storage capacity are needed, as well as safer and lower cost anodes and stable electrolyte systems. Flywheels and pumped hydropower also have niche roles to play.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

References

1.LaCommare, K.H., Eto, J.H., Understanding the Cost of Power Interruptions to U.S. Electricity Consumers (Energy Analysis Department, Lawrence Berkeley National Laboratory, University of California-Berkeley, Berkeley, CA, 2004; http://certs.lbl.gov/pdf/55718.pdf) (accessed January 2008).CrossRefGoogle Scholar
2.Dinorwig Power Station, http://www.fhc.co.uk/dinorwig.htm (accessed January 2008).Google Scholar
3.Whittingham, M.S., Savinell, R.F., Zawodzinski, T., Eds., “Batteries and Fuel Cells”, in Chem. Rev. 104, 4243 (2004).CrossRefGoogle Scholar
4.Whittingham, M.S., Prog. Solid State Chem. 12, 41 (1978).CrossRefGoogle Scholar
5.Linden, D., Reddy, T.B., Handbook of Batteries (McGraw Hill, New York, ed. 3, 2001).Google Scholar
6.Tarascon, J. M., Armand, M., Nature 414, 359 (2001).CrossRefGoogle Scholar
7.Basic Research Needs for Electrical Energy Storage (Offce of Basic Energy Sciences, U.S. Department of Energy, Washington, DC, 2007).Google Scholar
8.Kötz, R., Carlen, M., Electrochim. Acta 45, 2483 (2000).CrossRefGoogle Scholar
9.Libowitz, G.G., Whittingham, M.S., Materials Science in Energy Technology (Academic Press, New York, 1979).Google Scholar
10.Flandois, S., Simon, B., Carbon 37, 165 (1999).CrossRefGoogle Scholar
11.Fan, Q., Chupas, P.J., Whittingham, M.S., Electrochem. Solid-State Lett. 10 (12), A274 (2007).CrossRefGoogle Scholar
12.Whittingham, M.S., Sciences, 1126 (1976).CrossRefGoogle Scholar
13.Whittingham, M.S., Mater. Res. Bull. 13, 959 (1978).CrossRefGoogle Scholar
14.Song, Y., Zavalij, P.Y., Whittingham, M.S., J. Electrochem. Soc. 152, A721 (2005).CrossRefGoogle Scholar
15.Johnson, C.S., Kim, J.S., Kropf, A.J., Kahaian, A.J., Vaughey, J.T., Fransson, L.M.L., Edström, K., Thackeray, M.M., Chem. Mater. 15, 2313 (2003).CrossRefGoogle Scholar
16.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
17. A123; www.a123systems.com (accessed January 2008).Google Scholar
18.Drezen, T., Kwon, N.-H., Bowenb, P., Teerlinck, I., Isono, M., Exnar, I., J. Power Sources 174, 949 (2007).CrossRefGoogle Scholar
19.Song, Y., Zavalij, P.Y., Chernova, N.A., Whittingham, M.S., Chem. Mater. 17, 1139 (2005).CrossRefGoogle Scholar
20.Ogasawara, T., Débart, A., Holzapfel, M., Novák, P., Bruce, P.G., J. Am. Chem. Soc. 128, 1390 (2006).CrossRefGoogle Scholar
21.Wang, Y., Takahashi, K., Lee, K.H., Cao, G.Z., Adv. Funct. Mater. 16, 1133 (2006).CrossRefGoogle Scholar
22.Kim, D.-H., Kim, J., Electrochem. Solid-State Lett. 9, A439 (2006).CrossRefGoogle Scholar
23.Windle, A., private communication.Google Scholar
24.Chen, J., Whittingham, M.S., Electrochem. Commun. 8, 855 (2006).CrossRefGoogle Scholar
25.Zhou, F., Cococcionic, M., Marianetti, C., Morgan, D., Chen, M., Ceder, G., Phys. Rev. B 70, 235121 (2004).CrossRefGoogle Scholar
26.Wang, C.-W., Cook, K.A., Sastry, A.M., J. Electrochem. Soc. 150, A385 (2003).CrossRefGoogle Scholar
27.Maxisch, T., Zhou, F., Ceder, G., Phys. Rev. B 73 (2006).Google Scholar
28.Chen, G., Song, X., Richardson, T.J., Electrochem. Solid-State Lett. 9, A295 (2006).CrossRefGoogle Scholar
29.Breger, J., Dupre, N., Chupas, P.J., Lee, P.T., Proffen, T., Parise, J., Grey, C.P., J. Am. Chem. Soc. 127, 7529 (2005).CrossRefGoogle Scholar
30.Grey, C.P., Dupre, N., Chem. Rev. 104, 4493 (2004).CrossRefGoogle Scholar
31.Chernova, N.A., Ma, M.M., Xiao, J., Whittingham, M.S., Breger, J., Grey, C.P., Chem. Mater. 19, 4682 (2007).CrossRefGoogle Scholar
32.Petkov, V., Zavalij, P.Y., Lutta, S., Whittingham, M.S., Parvanov, V., Shastri, S., Phys. Rev. B69, 085410 (2004).CrossRefGoogle Scholar