Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T13:14:58.381Z Has data issue: false hasContentIssue false

Heat release rate correlation and combustion noise in premixed flames

Published online by Cambridge University Press:  29 June 2011

N. SWAMINATHAN*
Affiliation:
Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
G. XU
Affiliation:
Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
A. P. DOWLING
Affiliation:
Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
R. BALACHANDRAN
Affiliation:
Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
*
Email address for correspondence: ns341@cam.ac.uk

Abstract

The sound emission from open turbulent flames is dictated by the two-point spatial correlation of the rate of change of the fluctuating heat release rate. This correlation in premixed flames can be represented well using Gaussian-type functions and unstrained laminar flame thermal thickness can be used to scale the correlation length scale, which is about a quarter of the planar laminar flame thermal thickness. This correlation and its length scale are observed to be less influenced by the fuel type or stoichiometry or turbulence Reynolds and Damkohler numbers. The time scale for fluctuating heat release rate is deduced to be about τc/34 on an average, where τc is the planar laminar flame time scale, using direct numerical simulation (DNS) data. These results and the spatial distribution of mean reaction rate obtained from Reynolds-averaged Navier–Stokes (RANS) calculations of open turbulent premixed flames employing the standard model and an algebraic reaction rate closure, involving a recently developed scalar dissipation rate model, are used to obtain the far-field sound pressure level from open flames. The calculated values agree well with measured values for flames of different stoichiometry and fuel types, having a range of turbulence intensities and heat output. Detailed analyses of RANS results clearly suggest that the noise level from turbulent premixed flames having an extensive and uniform spatial distribution of heat release rate is low.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

On sabbatical leave from the Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080, China.

References

REFERENCES

Armitage, C. A., Balachandran, R., Mastorakos, E. & Cant, R. S. 2006 Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 146, 419436.Google Scholar
Ayoola, B. O., Balachandran, R., Frank, J. H., Mastorakos, E. & Kaminski, C. F. 2006 Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144, 116.Google Scholar
Balachandran, R., Ayoola, B. O., Kaminski, C. F., Dowling, A. P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143, 3755.Google Scholar
Bilger, R. W. 1993 In Turbulence and Molecular Processes in Combustion (ed. Takeno, T.), pp. 267285. Elsevier.Google Scholar
Bragg, S. L. 1963 Combustion noise. J. Inst. Fuel 36, 1216.Google Scholar
Bray, K. N. C. 1979 The interaction between turbulence and combustion. Proc. Combust. Inst. 17, 223233.Google Scholar
Bray, K. N. C. 1980 Turbulent flows with premixed reactants. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), pp. 115183. Springer.Google Scholar
Bray, K. N. C., Libby, P. A. & Moss, J. B. 1984 Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Tech. 41, 143172.Google Scholar
Chakraborty, N., Rogerson, J. W. & Swaminathan, N. 2008 A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20, 045106.Google Scholar
Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & S. Yoo, C. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001, doi:10.1088/1749-4699/2/1/015001.Google Scholar
Clavin, P. & Siggia, E. D. 1991 Turbulent premixed flames and sound generation. Combust. Sci. Tech. 78, 147155.Google Scholar
Crighton, D. G., Dowling, A. P., Williams, J. E. F., Heckl, M. & Leppington, F. G. 1992 Modern Methods in Analytical Acoustics: Lecture Notes, chap. Thermoacoustic sources and instabilities, pp. 387405. Springer.Google Scholar
Doak, P. E. 1972 Analysis of internally generated sound in continuous materials:2. a critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise. J. Sound Vib. 25, 263335.Google Scholar
Dowling, A. P. 1976 Mean temperature and flow effects on combustion noise. AIAA paper 79-0590.Google Scholar
Duchaine, P., Zimmer, L. & Schuller, T. 2009 Experimental investigation of mechanism of sound production by partially premixed flames. Proc. Combust. Inst. 32, 10271034.Google Scholar
Egolfopoulos, F. N., Zhu, D. L. & Law, C. K. 1990 Experimental and numerical determination of laminar flame speeds: mixtures of C2-hydrocarbons with oxygen and nitrogen. Proc. Combust. Inst. 23, 471478.Google Scholar
Flemming, F., Sadiki, A. & Janicka, J. 2007 Investigation of combustion noise using a LES/CAA hybrid approach. Proc. Combust. Inst. 31, 31893196.Google Scholar
Hartung, G., Hult, J., Kaminski, C. F., Rogerson, J. W. & Swaminathan, N. 2008 Effect of heat release on turbulence and scalar–turbulence interaction in premixed combustion. Phys. Fluids 20, 035110.Google Scholar
Hassan, H. A. 1974 Scaling of combustion-generated noise. J. Fluid Mech. 66, 445453.Google Scholar
Hemchandra, S. & Lieuwen, T. 2010 Local consumption speed of turbulent premixed flames: an analysis of ‘memory effects’. Combust. Flame 157, 955965.Google Scholar
Hirsch, C., Wasle, J., Winkler, A. & Sattelmayer, T. 2007 A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst. 31, 14351441.Google Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303, 409427.Google Scholar
Ihme, M., Pitsch, H. & Bodony, D. 2009 Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32, 15451553.Google Scholar
Jones, H. 1979 The generation of sound by flames. Proc. R. Soc. Lond. A 367, 291309.Google Scholar
Kilham, J. H. & Kirmani, N. 1979 The effect of turbulence on premixed flame noise. Proc. Combust. Inst. 17, 327336.Google Scholar
Klein, S. A. & Kok, J. B. W. 1999 Sound generation by turbulent nonpremixed flames. Combust. Sci. Tech. 149, 267295.Google Scholar
Kolla, H., Rogerson, J. W., Chakraborty, N. & Swaminathan, N. 2009 Scalar dissipation rate modelling and its validation. Combust. Sci. Tech. 181 (3), 518535.Google Scholar
Kolla, H., Rogerson, J. W. & Swaminathan, N. 2010 Validation of a turbulent flame speed model across combustion regimes. Combust. Sci. Tech. 182, 284308.Google Scholar
Kotake, S. 1975 On combustion noise related to chemical reactions. J. Sound Vib. 42 (3), 399410.Google Scholar
Kotake, S. & Takamoto, K. 1987 Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112 (2), 345354.Google Scholar
Kotake, S. & Takamoto, K. 1990 Combustion noise: effects of the velocity turbulence of unburned mixture. J. Sound Vib. 139 (1), 920.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lighthill, M. J. 1954 On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 222, 132.Google Scholar
Mahan, J. R. 1984 A critical review of noise production models for turbulent, gas-fueled burners. Tech. Rep. NASA CR–3803. NASA, Lewis Research Center.Google Scholar
Nada, Y., Shiwaku, N., Kikuta, S., Tannahashi, M. & Miyauchi, T. 2005 Fractal characteristics of hydrogen–air turbulent premixed flames. In 5th Asia-Pacific Conference on Combustion 2005. The University of Adelaide, Australia.Google Scholar
Nada, Y., Tanahashi, M. & Miyauchi, T. 2004 Effect of turbulence characteristics on local flame structure of H2–air premixed flames. J. Turbul. 5 (1), 115.Google Scholar
Najm, H. N., Knio, O. M., Paul, P. H. & Wyckoff, P. S. 1998 A study of flame observables in premixed methane–air flames. Combust. Sci. Tech. 140, 369403.Google Scholar
Ohiwa, N., Tanaka, K. & Yamaguchi, S. 1993 Noise characteristics of turbulent diffusion flames with coherent structure. Combust. Sci. Tech. 90, 6178.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Poinsot, T. & Veynante, D. 2001 Theoretical and Numerical Combustion. Edwards.Google Scholar
Price, R. B., Hurle, I. R. & Sugden, T. M. 1968 Optical studies of the generation of noise in turbulent flames. Proc. Combust. Inst. 12, 10931101.Google Scholar
Rajaram, R. 2007 Characteristics of sound radiation from turbulent premixed flames. PhD thesis, Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.Google Scholar
Rajaram, R. & Lieuwen, T. 2003 Parametric studies of acoustic radiation from premixed flames. Combust. Sci. Tech. 175, 22692298.Google Scholar
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.Google Scholar
Rutland, C. J. & Cant, R. S. 1994 Turbulent transport in premixed flames. In Proc. of Summer Program, Centre for Turbulence Research, pp. 7594. NASA Ames/Stanford University.Google Scholar
Singh, K. K., Frankel, S. H. & Gore, J. P. 2004 Study of spectral noise emissions from standard turbulent non-premixed flames. AIAA J. 42 (5), 931936.Google Scholar
Singh, K. K., Zhang, C., Gore, J. P., Mongeau, L. & Frankel, S. H. 2005 An experimental study of partially premixed flame sound. Proc. Combust. Inst. 30, 17071715.Google Scholar
Spalding, D. B. 1971 Mixing and chemical reaction in steady confined turbulent flames. Symp. (Intl) Combust. 13, 649657.Google Scholar
Strahle, W. C. 1971 On combustion generated noise. J. Fluid Mech. 49, 399414.Google Scholar
Strahle, W. C. 1973 Refraction, convection and diffusion flame effects in combustion generated noise. Proc. Combust. Inst. 14, 527535.Google Scholar
Strahle, W. C. 1976 Convergence of theory and experiment in direct combustion-generated noise. Prog. Astronaut. Aeronaut. 43, 467481.Google Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.Google Scholar
Strahle, W. C. & Shivashankara, B. N. 1975 A rational correlation of combustion noise results from open turbulent premixed flames. Proc. Combust. Inst. 15, 13791385.Google Scholar
Swaminathan, N., Balachandran, R., Xu, G. & Dowling, A. P. 2011 On the correlation of heat release rate in turbulent premixed flames. Proc. Combust. Inst. 33, 15331541.Google Scholar
Swaminathan, N. & Grout, R. W. 2006 Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102.Google Scholar
Wasle, J., Winkler, A. & Sattlemayer, T. 2005 Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames. Flow Turbul. Combust. 75, 2950.Google Scholar